REVISION	WHO	WHAT	WHEN
0	STS AM	first version	
А	Romain Verchère Fondation Veolia + STS AM	Complete update Veoliaforce mission	1/23/2019
В	STS AM	(Update AM + Final Validation Romain Verchère Fondation Veolia) 0 Hypothesis : cosmetic 1 DP : New HBT update 2 HBT : separation Design & operation 3 ABR : add operation part 4 HCW1 : 3 design theory added & compared 5 Pond : add design calc 6 Infiltration : New HBT update 7 Drying beds : geometry + operation & cleaning some unused lines 8 HCW2 : 3 design theory added & compared 10 Incineration : operation added Updates validated Addition not validated by Veolia Fondation	6/5/2019

Hypothesis

Design parameters				
Time of operation	9	h/d	The STS on	ens from 8a
Number of operating days	6	d/week	ine 515 op	
Time for one tractor to desludge	3	min		
Time for one tractor to desiduge	5			
Inlet flow				
	m3			
Volume of a tank	1.5			
Barrel filling ratio	67%		The tractor	rs can transp
Mean volume transported by tractor	1.0		Data from	19 to 29/03,
Number of tractors	9			
	trips/d		-	
Number of trips per tractor per day	3.9			
	trips/d	trips/h		
Average number of trips	35		Data from June 2018 t	
Maximum number of trips	61	6.8	Data from June 2018 to	
	m3/day	m3/h	m3/s	
Average inlet flow	35.0	3.9	0.001	
Maximum inlet flow	61.0	6.8	0.002	
Instantaneous inlet flow			0.006	
Max Instantaneous inlet flow			0.011	
Sludge average characteristics = at average	mg/l	kg/d	kg/h	kg/tractor
TS	13000	455.0	19.0	13.0
COD	12000	420.0	17.5	
NH4	1000	35.0	1.5	
NO3	70	2.5	0.1	
NGL	1070	37.5	1.6	
Р	35	1.2	0.1	
Sludge max characteristics = at maximum	mg/l	kg/d	kg/h	kg/tractor
Sludge max characteristics = at maximum TS	mg/l 24000	kg/d 1464.0	kg/h 61.0	kg/tractor 24.0

m to 5pm

ort tanks filled up to about 78% because of weight, depending on the desludging location /19

o December 2018 o December 2018

Values from the STS Analyses document - March 2019

Values from the STS Analyses document - March 2019

Dumping station

L	2
W	2
H2.hig	h
H2.lo	w
Slop	e
Volum	e

RECEPTION				
	ft	in	m	
L1	16	1	4.9	
W1.1	2	6	0.8	
W1.2	2	7	0.8	
H1.high	1	1.5	0.3	
H1.low	1	9	0.53	
H1.high eff max		9	0.23	
Slope			3.9%	
	ft3		m3	
Volume	46.3		1.7	
V1eff max	32.2		1.14	

CORRIDOR			
	ft	in	m
L2	10	4	3.15
W3	2	11	0.89
H3.high = H2.low	2	1.5	0.65
H3.low	2	7	0.79
Slope			4.4%
	ft3		m3
Volume	14.4		1.9

Total slope	
	m
L	8.86
H.high	0.34
H.low	0.79
Slope	5.0%

L4.1
L4.2
W4
H4.high = H3.low
H4.low
H4eff
H5
Vertical section L4.1
Vertical section L4.2

Vertical section H5

Volume Veff

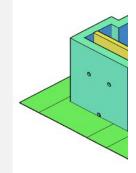
Design calculations

Retention time		
	ft3	m3
Veff total	17.8	0.5
	m3/day	m3/h
Average daily inlet flow	35.0	3.9
Max hourly inlet flow		6.8
	hour	min
Average retention time	0.13	7.8
Min retention time	0.07	4.5
Flow		
	m3/h	

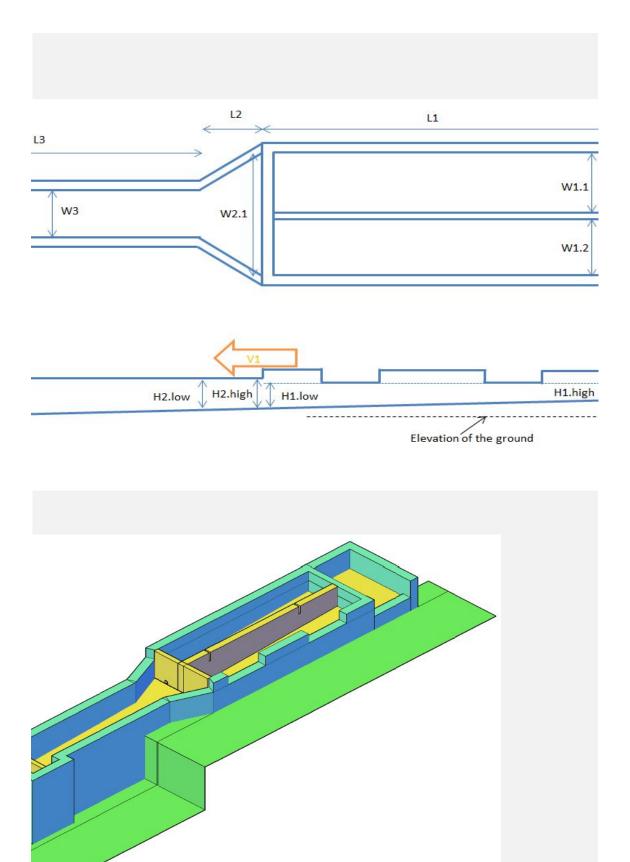

Instantaneous inlet flow	20.0
	DN (mm)
Gate valve diameter	100
	m/h
V1	42.4
V2	35.2
V3	40.3
V4	47.0

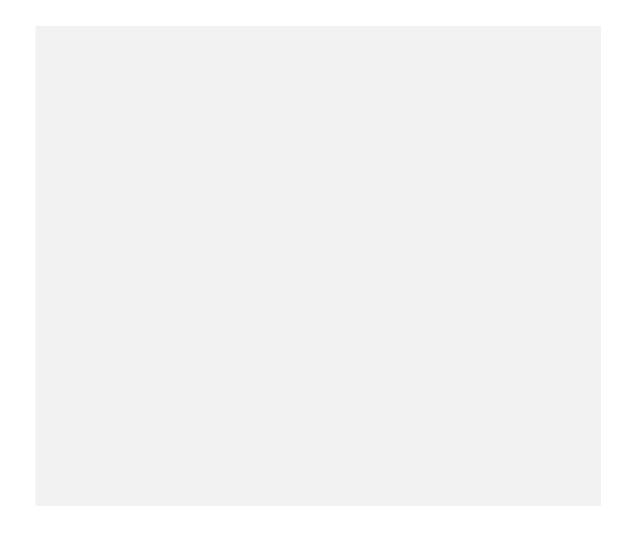
The flow has to be >30m/h to avoid sludge sedimentation - v

Operation

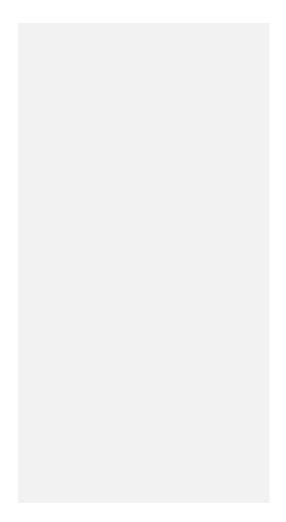

Inlet volume measurement				
	Tank 1 (W1.1)		Tank 2 (W1.2)	
Volume	H1.	H1.high eff H1.high eff		gh eff
m3	cm	in	cm	in
1.5	30.6	12.1	31.2	12.3
1.4	28.0	11.0	28.6	11.3
1.3	25.3	10.0	26.1	10.3
1.2	22.6	8.9	23.5	9.2
1.1	19.9	7.8	20.9	8.2
1	17.2	6.8	18.3	7.2
0.9	14.6	5.7	15.7	6.2
0.8	11.9	4.7	13.1	5.2
0.7	9.2	3.6	10.5	4.1
0.6	6.5	2.6	7.9	3.1
0.5	3.9	1.5	5.3	2.1

SCREEN		
ft	in	m
2	8	0.81
5	7	1.70
2	0	0.61
2	1.5	0.65
		4.7%
ft3		m3
16.1		0.6




H4.low H4eff	
-----------------	--

TANK		
ft	in	m
1	4	0.41
1	0	0.30
4	7	1.40
2	7	0.79
6	8	2.03
3	4	1.02
1	2	0.36
ft2		m2
6.1		0.6
4.6		0.4
5.3		0.5
ft3		m3
53.5		1.5
17.8		0.5

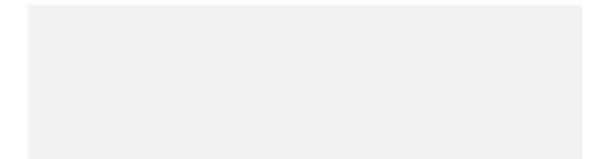

/eolia Fondation

HBT			
Number of HB			2
	ft	in	m
Diamete	· 13	0	4.0
Height of the cone	9	3	2.8
Height of the upper par	2	0	0.6
Effective height of the upper par	: 0	7	0.2
	ft3		m3
Volume 1 HB	674.7		19.1
Effective volume 1 HB	486.7		13.8
	ft2		m2
Specific horizontal surface 1 HB	66.4		6.2

Design calculations

Retention time			
	1	2	1
Number of HBT in operation		2 our	
Hydraulic retention time at average	3.5	7.1	The HBTs a
Hydraulic retention time at maximum	2.0	4.1	
	m3/day	m3/h	1
Design inlet flow	40.0	4.4	From De Bc
	m	g/l	
Total solid design value	220	000	From De Bc
Average Total solid influent concentration	130	000	
	g/l		
HBT solid outlet concentration expected	50		Expected co
Average TS sludge concentration in total HBT	33		Veolia Fonc
TS reduction expected	60%		Hypothesis
	m		
Maximum height of the sludge	1.9		Chosen to k
	m	13	
Available volume for the sludge per HBT	3	.4]
	k	g	1
Mass of the sludge equivalent	114.5	228.9	1
	kg/d.m2		
Design surfacic mass load	217.7	108.8	
	m	13	
Volume of sludge at expected concentration	2.3	4.6	
	-	urs	
Sludge retention time at design	5.2	10.4	
Siddge retention time at design	5.2	10.4	1

Operation


	m3/day	m3/h
Average inlet flow	35.0	3.9
Maximum inlet flow	61.0	6.8

Number of HBT in operation	1	2	
		hours	
Sludge retention time at average	10.1	10.1 20.1	
Sludge retention time at maximum	3.1	6.3	
	times/	d/HBT	
Number of time of desludging at average	2.4	1.2	
Number of time of desludging at maximum	7.7	3.8	
	m3/d	m3/d/HBT	
Volume extracted per HBT at average	5.5	2.7	
Volume extracted per HBT at maximum	17.6	8.8	
	kg	/d	
Load extracted at expected concentration at average	273		
Load extracted at expected concentration at maximum	87	78	
	g	/I	
Total solid concentration liquid outlet at average	6.	6.2	
Total solid concentration liquid outlet at maximum	13.5		24 g/l aco
	m3	/d	
Daily flow liquid outlet at average	29.5		
, , , ,	43.4		

	kg/m3.h		
Peak TS loading per HBT	11.8	5.9	Maximum c

Velocity				
	DN (mm)			
Inlet pipe diameter	100			
	m/h			
HBT rising velocity at average	0.6	< 1m/h to a		
HBT rising velocity at maximum	1.1			
	m/h			
Velocity inlet pipe at average	495	>30m/h to		
Velocity inlet pipe at maximum	863			

Height to desludge per HBT			
Number of HBT in operation	1	2	
Number of tractors between two HBT desludging	1	5	Operation
	r	13	
Volume to desludge per HBT	2.3	1.2	
Total volume of HBT	13	.8	
Volume in the upper part of the HBT	2	.2	
Volume of the cone of the HBT	11	6	
Volume kept per HBT	11.4	12.6	
Remaining volume to desludge from the cone per HBT	0.1	0.0	
Remaining volume in the cone after desludging	11.4		
	r	n	
Height to desludge per HBT	0.190	0.095	
	i	n	
Height to desludge per HBT	7	4	Operation p

<u>Geometrica</u>	al Volume C	Calculation	
Height			
ft	in	m	ft
0	0	0.0	#N/A
1	3	0.4	#N/A
3	3	1.0	#N/A
5	3	1.6	#N/A
7	3	2.2	#N/A
9	3	2.8	#N/A
10	0	3.0	2.0

re designed for a 3h retention time - De Bonis report

onis report

onis report

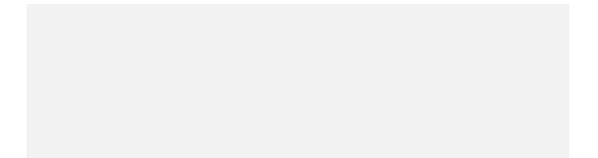
oncentration - Veolia Fondation Jation - 2/3 of design concentration from mass balance 01/12/18 beside

be approximatly 3 ft or 1m below the outlet liquid pipe

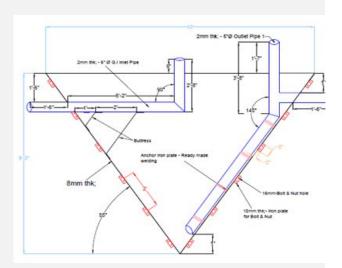
rding to STS Analysis document

of 8 kg/m3.h according to De Bonis report

allow sedimentation - Fondation Veolia

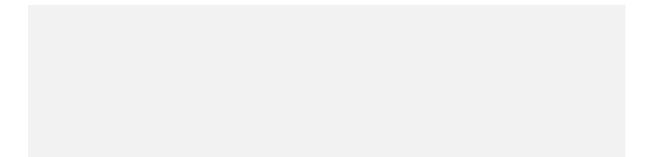

avoid sedimentation - Fondation Veolia

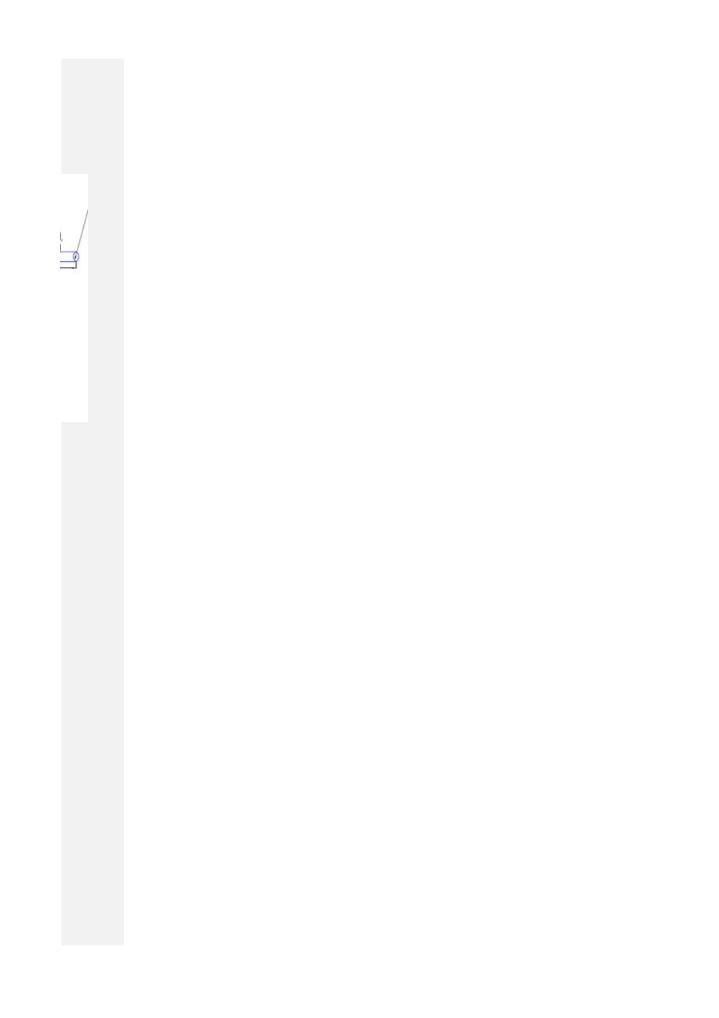
Calculation for the height to desludge, according to t


	m
Radius	2.0
Height	2.8
Height to desludge in the cone	0.01

parameter

barameter




Diameter	Volume		
m	ft3 m3		
0.0	#N/A	0.0	
1.3	#N/A	0.2	
3.4	#N/A	3.0	
5.5	#N/A	12.6	
7.6	#N/A	33.2	
9.7	#N/A	69.0	
0.6	#N/A	69.0	

MASS BALANCE		HBT Inlet	HBT liquid	HBT solid o	STS Outlet
Concentration	g/l	13.00	5.50	48.00	0.418
Flow design	m3/d	40	36	4	36
Load	kg/d	520	198	192	15
				390.0	
		HBT Reduc	62%	STS Reduct	97%

the remaining volume in the cone		

ABR - Anaerobic filter

First chamber (inlet) - settler					
ft in					
Length	5	0	1.5		
Width	11	7	3.5		
Height	6	0	1.8		
Effective height	5	0	1.5		
	ft2		m2		
Area	57.9		5.4		
	ft3		m3		
Volume	347.5		9.8		
Effective volume	289.6		8.2		

Chamber without gravel			
	ft	in	m
Length	2	9	0.8
Width	4	7	1.4
Height	5	5	1.7
Effective height	4	5	1.3
Maximum height of sludge	3	6	1.1
	ft2		m2
Area	12.6		1.2
	ft3		m3
Volume	68.3		1.9
Effective volume	55.7		1.6
Maximum volume of sludge	44.1		1.2

Last chamber (outlet)						
	ft					
Length	1	5	0.4			
Width	22	7	6.9			
Height	6	3	1.9			
Effective height	5	3	1.6			
	ft2		m2			
Area	32.0		3.0			
	ft3		m3			
Volume	200.0		5.7			
Effective volume	168.0		4.8			

ABR - anaerobic filter total					
ft in m					
Length	43	8	13.3		
Width	22	7	6.9		
Number chambers without gravels	32				
Number chambers with gravels	16				
	ft2		m2		

Area 726		67
----------	--	----

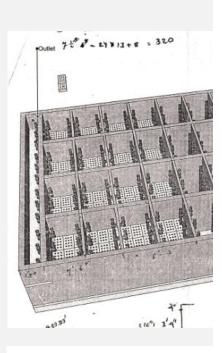
Design calculations

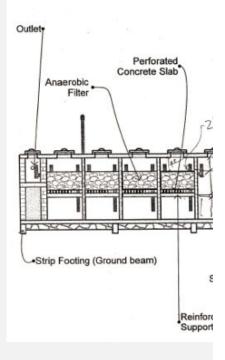
Porosity of gravels (0.5" to 2")		
	L	
Volume of empty bucket	13	
Volume of water poured with gravels	5.5	
Porosity	42%	

Retention time			
	ft3	m3	
Effective volume in ABR chambers	1781	50	
Effective volume in anaerobic filter chambers	891	25	
Minimum volume of the liquid fraction of ABR	370	10	
ABR			
	day		
Hydraulic retention time at average	1.7		Between 1 and 3 days
Hydraulic retention time at maximum	1.2		
	hour		
Minimum hydraulic retention time at average	8.5		> 24 hours at maximur
Minimum hydraulic retention time at maximum	5.8		
Anaerobic filter			
	hour		
Retention time at average	20		An hydraulic retention
Retention time at maximum	14		

Up-flow velocity			
	Average Max		
Number of chambers in a row	4		
	m3/h	m3/h	
Operationnal Flow	3.3	4.8	
	m/h	m/h	
Baffled Chamber Up-flow velocity	0.7	1.0	Between 1.4 and 2m/
First Chamber Up-flow velocity	0.6	0.9	
Second Chamber Up-flow velocity	1.1	1.7	
Last Chamber Up-flow velocity	1.1	1.6	

COD loading of ABR		
	mg/l	
COD inlet concentration	5000	According to the document Analy
	kg/m3.d	
COD loading at average	2.9	Maximum 3kg/m3.d - De Bonis re
COD loading at maximum	4.3	


Operation


Production of solid sludge from the two first chambers				
	ft	in	m	
Maximum height of sludge	3	6	1.1	
	ft3	m3		
Volume of sludge removed from chamber 1	173.8	5.7		
Volume of sludge removed from chamber 2	93.2	3.1		
	weeks			
Time between two desludging	2			From expei
	m3/d			
Volume of desludged sludge	0.63			

TS sludge reduction of ABR sludge		
	m3/d	
Inlet flow	29.5	
Volume extracted by desludging	0.6	
	g/l	
TS inlet concentration	8	According to the document Analy
TS outlet concentration	2	
TS sludge concentration	50	
	kg/d	
TS loading at inlet	236.3	
TS loading at outlet	57.8	
TS loading remaining in ABR	31.5	
Sludge reduction	82%	

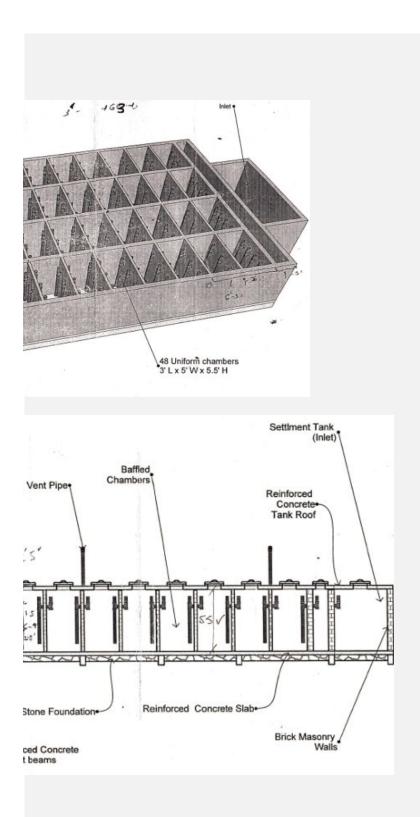
Second chamber - settler		
ft	in	m
1	4.5	0.4
22	7	6.9
6	0	1.8
5	0	1.5
ft2		m2
31.1		2.9
ft3		m3
186.3		5.3
155.3		4.4
	ft 1 22 6 5 ft2 31.1 ft3 186.3	ft in 1 4.5 22 7 6 0 5 0 ft2 7 31.1

Chamber with gravel			
	ft	in	m
Length	2	9	0.8
Width	4	7	1.4
Total Height	5	5	1.7
Height of gravels	0	10	0.3
Effective height	4	5	1.3
	ft2		m2
Area	12.6		1.2
	ft3		m3
Volume	68.3		1.9
Effective volume	55.7		1.6

according to UN Habitat 2008 and De Bonis report

n sludge depth and scum accumulation - UN Habitat 2008 /// The HRT of the liquid fraction (i.e. above the sludge \cdot

time of 12 to 36 hours is recommended - Compendium sanitation


n - UN Habitat 2008 /// The up-flow should not exceed 1.0m/h - DEWATS

ses STS

port

rience

ses STS

volume) should not be less than eight hours - DEWATS

Horizontal Constructed Wetland 1

	mm/d	
Evaporation ratio hypothesis	0.5	
Number of CW	2	
	ft	in
L	48	9
L of gravels of more than 1.5"	4	0
L of gravels between 0.5" and 1.5"	44	9
W	38	9
H of gravels	1	1
H of water (left bed)	0	7.25
H of water (right bed)	0	8.25
Volume for 1 bed		
	ft	
Area	3778	
Volume for 2 beds		
	•	
	m	13/d
	-	

	iii 5/ u	
	Average	Max
Outlet daily flow incl. evaporation	29	43

Design calculations

Porosity of gravels (0.5" to 1.5")	
	L
Volume of empty bucket	13
Volume of water poured with gravels	5.6
Porosity	43%

Porosity of gravels (more than 1.5")	
	L
Volume of empty bucket	13
Volume of water poured with gravels	5.7
Porosity	44%

Retention time		
	m2	
One bed area for gravels of more than 1.5"	14	
One bed area for gravels between 0.5" and 1.5"	161	
	at average	at maximum
	days	
Retention time left bed	0.94	0.64
Retention time right bed	1.07	0.73
Retention time total	1.01	0.69
	h	
Retention time total	24	16

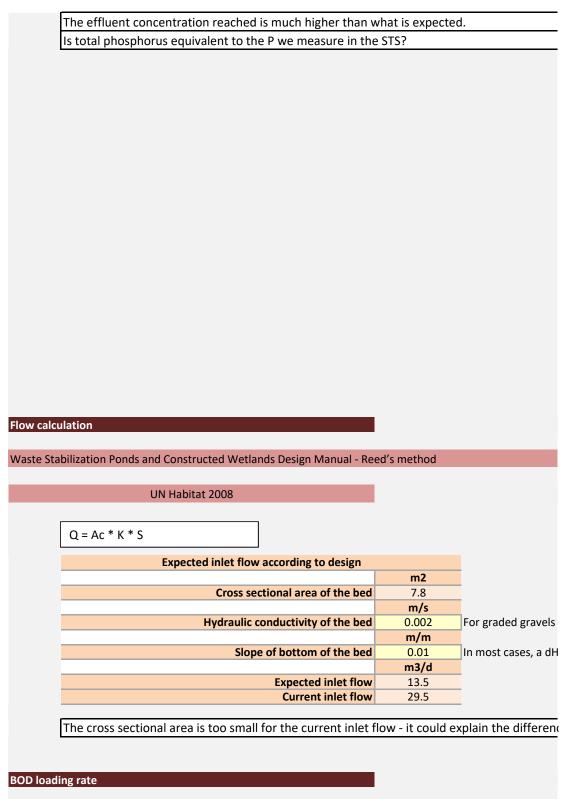
Design review with 'UN Habitat 2008' and 'Waste Stabilization Ponds and Constructed Wetlands Des

Pollutants removal

UN Habitat 2008		
Ce= Ci / exp(A * Kbod / Q)		
BOD removal		
	mg/l	
Influent COD concentration	4300	According to the do
Influent BOD5 concentration	1720	Extrapolation by Ve
	m/d	
Rate constant	0.15	
	mg/l	
Expected BOD5 effluent concentration	289	
Effluent obtained	1000	According to the do
Reduction of BOD5 expected	83%	
Reduction obtained	23%	According to the do

Ce= Ci * (0,106 + 0,11 * AHLR)		
TSS removal		
	mg/l	
Concentration of TSS in the influent	2000	According to the do
	m/d	
Aerial hydraulic loading	0.0842	
	mg/l	
Expected concentration of SS in the effluent	231	
Current concentration of TSS in the effluent	400	According to the do
TSS expected reduction	88%	
Current reduction	65%	According to the do

The first two methods present similar results for BOD and TSS removal and thus should be The area is well dimensionned for the current flow and inlet concentrations (more than 80% But the constructed wetlands are not reaching the result expected by design on BOD5, TSS


Ce = Ci * exp(-0,126*(1,008)^(T-20)*R)		
NH4 removal		
	mg/l	
Concentration of ammonia in the influent	1000	According to the do
	Degree Celcius	
Minimum mean temperature	21	mean temperatur
	mg/l	
Expected concentration of ammonia in the effluent	880	

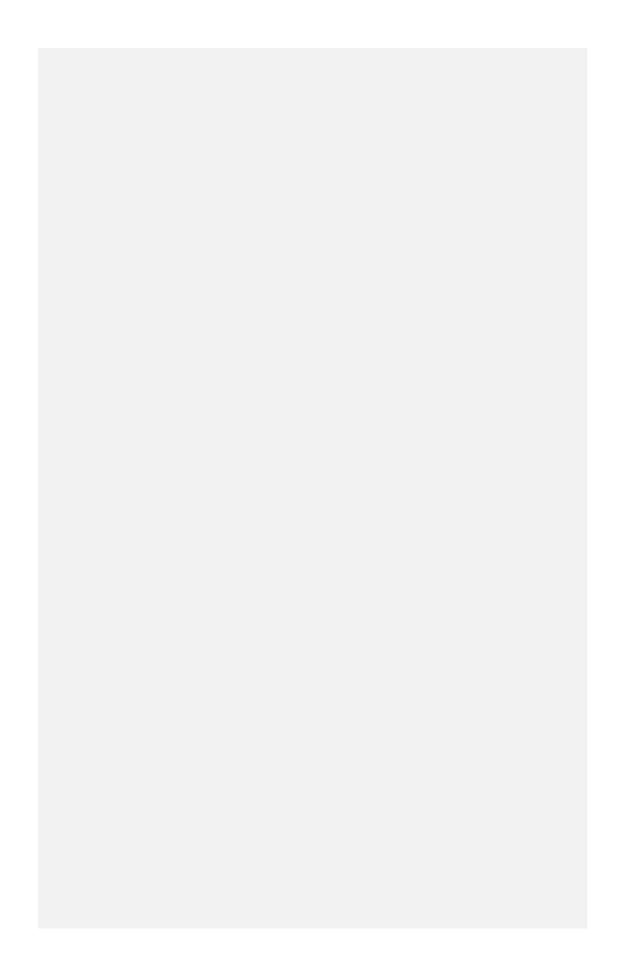
Current concentration of ammonia in the effluent	890	According to the do
Ammonia expected reduction	12%	
Current reduction	23%	According to the do

The three methods present very different results for amonia removal.

The two methods show similar results for nitrates removal. The effluent concentration reached is much higher than what is expected.

The two methods show similar results for total phosphorus removal

UN Habitat 2008	
Expected BOD5 loading rate according to desig	gn
	mg/l
Influent BOD5 concentration	1720
	g/m2.d

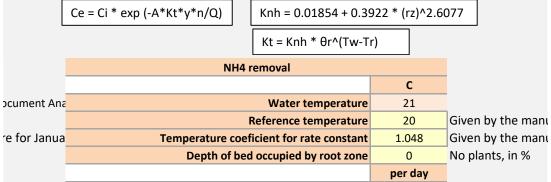

Maximum recommended BOD5 loading	11	According to De Bo
	g/m2.d	
BOD5 loading rate according to current inlet flow	144.8	
Expected BOD5 loading rate with expected inlet flow	66.0	
	m2	
Recommended area for current parameters	4619	
Current area	351	

The BOD5 loading rate is higher than the recommended one, even with the expected inlet in The recommended area is very big and do not match the calculations from the literature. T

Recommended design for current parameters

Waste Stabilization Ponds and Constructed Wetlands Design Manual - Reed's method

UN Habitat 2008		
Ac = Q / (K * S)		
Recommended sizing of the CW		
	m3/s	
Daily flow average	0.0003	
	m/s	
Hydraulic conductivity of the bed	0.002	For graded gravels
	m/m	
Slope of bottom of the bed	0.01	In most cases, a dH
	m2	
Cross sectional area of the bed	17.1	
	m	
Recommended total width	51.8	
Recommended number of beds	4	
Recommended width per bed	12.9	
Recommended length	6.8	
Current total width	23.6	
Current number of beds	2	
Current width per bed	11.8	
Current length	14.9	



Cross sectional area of the flow	2	Ac = Q / Ks * S
cross-sectional area of wetland bed	m2	
	m3/m2.day	
Hydraulic conductivity of the medium		
Slope of the bed or hydraulic gradient		(as a fraction or o
	m	
Depth		W = Ac / d
Width		
Kadlec and Knight design method		

	1	Top View
m		+
14.9		
1.2		0000000000
13.6		
11.8		
0.33		
0.18	The water flow is maintained approximately 15 – 30 cm below the bed sur	
0.21		
58		
m2		
351		
m3		
116		

gn Manual' guidelines

	Waste Stabilization Ponds and Cor	nstr	ucted Wetlands Design	Manual	
	Reed's method				
[Ce = Ci * exp (-A*Kt*y*n/Q)	[Kt = Kr * θr^(Tw-Tr)		
	BC	Dre	emoval		
				С	
ocument Ana			Water temperature	21	Same as air tempe
eolia fondati		R	eference temperature	20	Given by the man
	Temperature co	oefi	cient for rate constant	1.06	Given by the man
				per day	
	Rate	at r	eference temperature	1.104	Given by the man
	Rate	e co	nstant at temperature	1.17	
ocument Ana			Porosity	0.43	
				mg/l	
ocument Ana			Influent concentration	1720	
	Expect	ed (effluent concentration	234	
	Current effluent concentration 1000				
Reduction of BOD5 expected 86%		86%			
Reduction obtained 23%					
	Ce = Ci * (0.1058 + 0.001 * HL	.R)	HLR = 100*Q//	Ą	
	TS	S re	emoval		
				cm/d	
ocument Ana			Hydraulic loading rate	8.42	
				mg/l	
		I	Influent concentration	2000	
	Expect	ed (effluent concentration	228	
	Curre	ent	effluent concentration	400	
ocument Ana		т	SS expected reduction	89%	
Current reduction 65%					
ocument Ana	lysis STS the third one.				
% reduction expected for BOD5 and TSS).					
	und 100/				
Γ	Ce = Ci * exp (-A*Kt*y*n/Q)	Γ	Knh = 0.01854 + 0.39))) * (r7)^) A	077
	C = C = C + C + C + C + C + C + C + C +		NIII - 0.01004 - 0.03	(12) 2.0	

ocument Ana	Nitrification rate constant	0.019
	Rate constant at temperature	0.019
ocument Ana	Porosity	0.43
		mg/l
	Influent concentration	1000
	Expected effluent concentration	967
	Current effluent concentration	890
	Ammonia expected reduction	3%
	Current reduction	23%

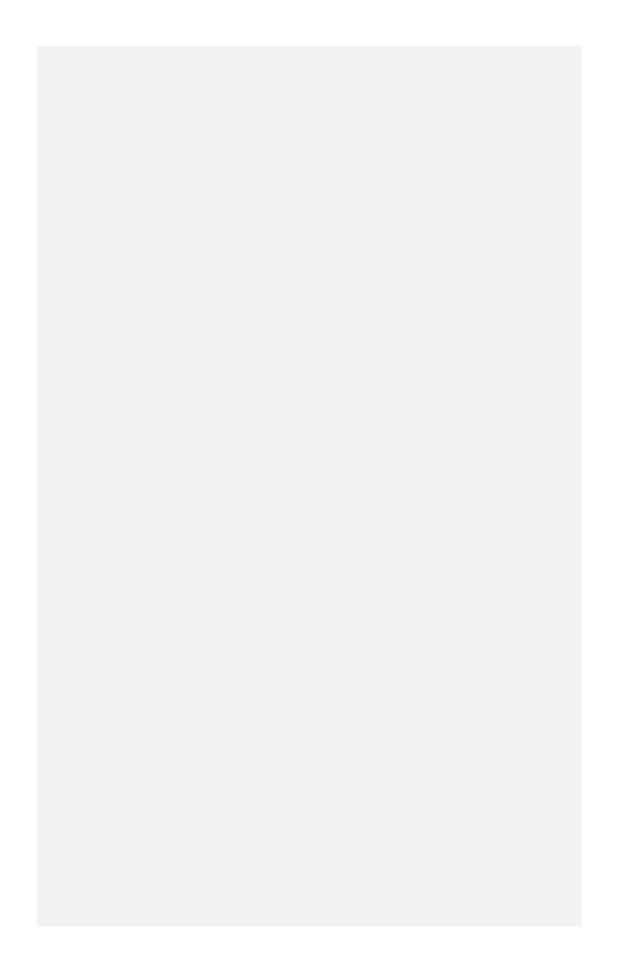
Ce = Ci * exp (-A*Kt*y*n/Q) $Kt = Kr * \theta r^{Tw-Tr}$		
NO3 removal		
	С	
Water temperature	21	ТВС
Reference temperature	20	Given by the manu
Temperature coeficient for rate constant	1.15	Given by the manu
	per day	
Rate at reference temperature	1.00	Given by the manu
Rate constant at temperature	1.15	_
Porosity	0.43	_
	mg/l	
	25	From the Analyses
Influent concentration	25	
Influent concentration Expected effluent concentration	4	
		From the Analyses
Expected effluent concentration	4	From the Analyses

Ce = Ci * exp(-Kp/HLR)		
Removal total phosphorus		
	cm/d	
First order phosphorous reaction rate	2.73	Given by the manu
	mg/l	
Influent concentration	46	From the docume
Expected effluent concentration	33	
Current effluent concentration	77	From the docume
Total phosphorus expected reduction	28%	

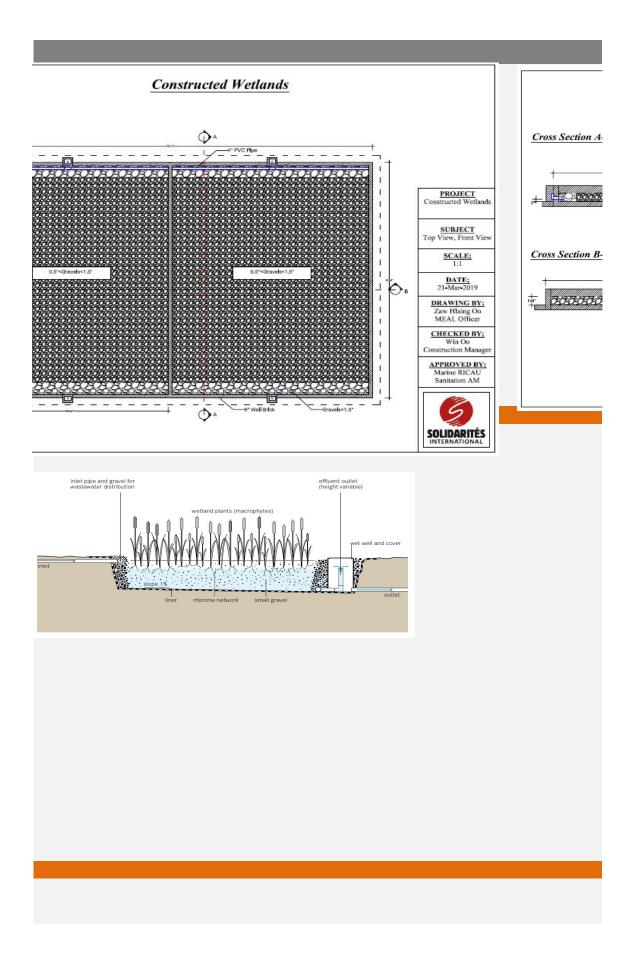
Ce = Ci / (1+ t * Kt)^n Κt = Kr * θr^(Tw-Tr)	
Pathogens removal	
С	
Water temperature 21	
Reference temperature 20 Given	n by the manu
Temperature coeficient for rate constant 1.19 Given	n by the manı
per day	
Rate at reference temperature 2.60 Given	n by the manı
Rate constant at temperature3.09	
Number of cells in series 1	
nb/100ml	
Influent concentration 433500	
Expected effluent concentration 105168	
Current effluent concentration 75583 From	the docume
Pathogens expected reduction 76%	
Current reduction 79% From	n the Analyses

a value of Kf of 1 x 10-3 to 3 x 10-3 m/s is normally chosen. Here 2 x 10-3 m/s was chosen

/ds of 1% is used - not measured

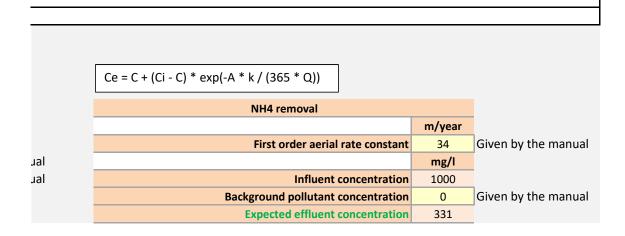

ce in removal results

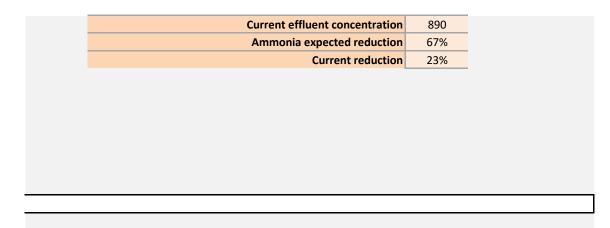

flow.4


he maximum recommended BOD5 loading of 11 g/m2.d seems to be overestimated.

a value of Kf of 1 x 10-3 to 3 x 10-3 m/s is normally chosen. Here 2 x 10-3 m/s was chosen

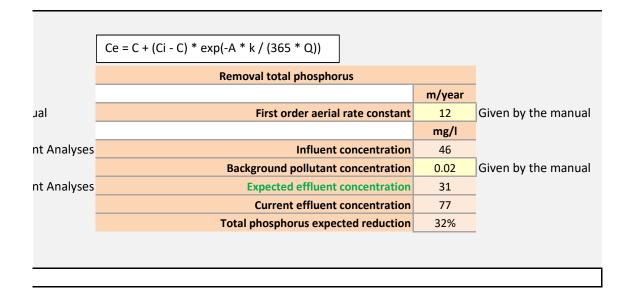
/ds of 1% is used





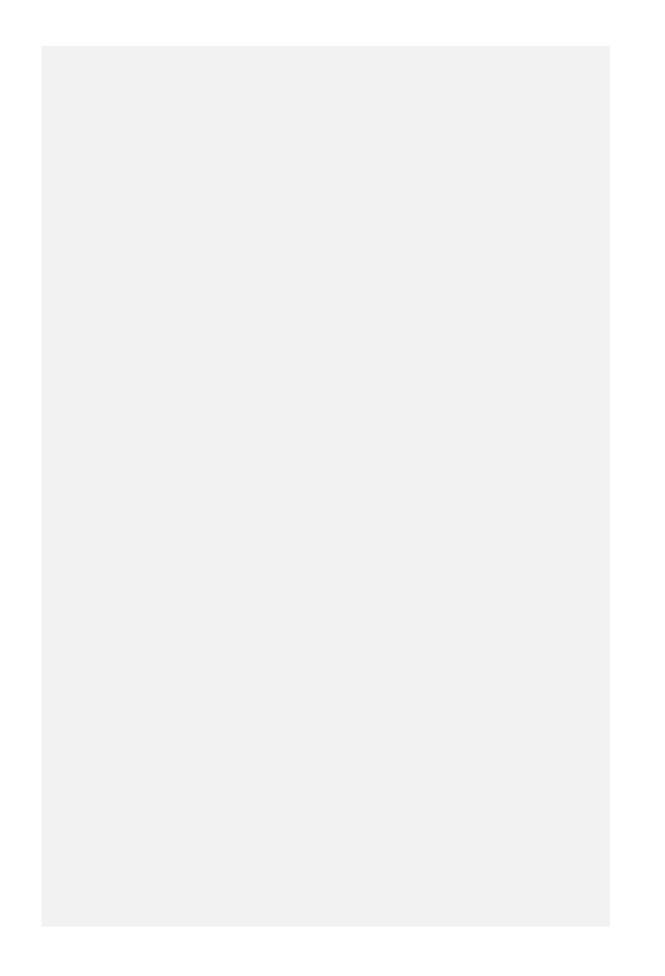
	Waste Stabilization Ponds and Constructed Wetlands Design Ma Kadlec and Knight design method	anual	
	Ce = C + (Ci - C) * exp(-A * k / (365 * Q))		
	BOD removal		
		m/year	
ature	First order aerial rate constant	180	Given by the manual
ul.		mg/l	
ul.	Influent concentration	1720	
	Background pollutant concentration	95	
ul.	Expected effluent concentration	99	
	Current effluent concentration	1000	
	Reduction of BOD5 expected	94%	
	Reduction obtained	23%	

Ce = C + (Ci - C) * exp(-A * k / (365 * Q))

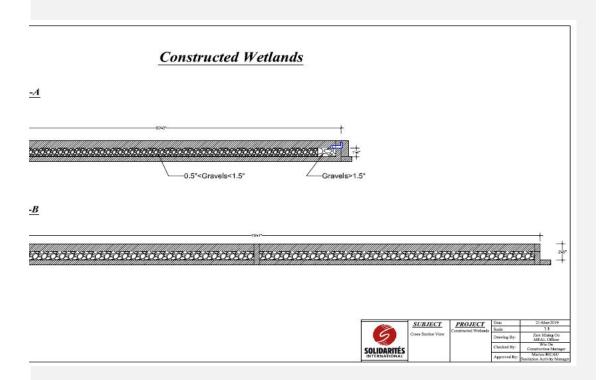

TSS removal		
	m/year	
First order aerial rate constant	1000	Given by the manua
	mg/l	
Influent concentration	2000	
Background pollutant concentration	134	
Expected effluent concentration	134	
Current effluent concentration	400	
TSS expected reduction	93%	
Current reduction	65%	

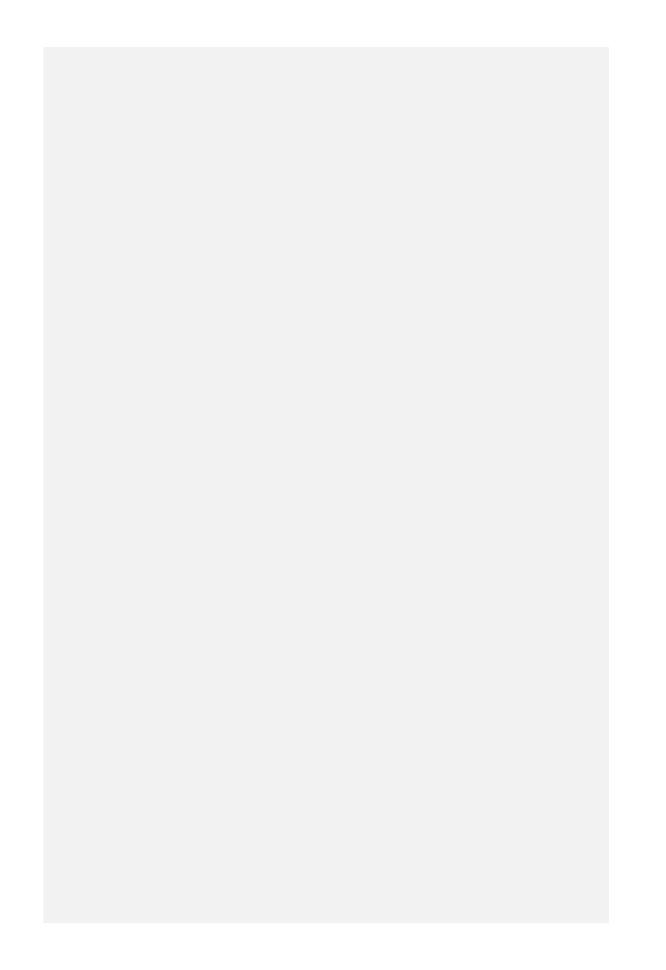
	Ce = C + (Ci - C) * exp(-A * k / (365 * Q))			
	NO3 removal			
		m/year		
	First order aerial rate constant	50	Given by the manual	
Jal		mg/l		
Jal	Influent concentration	25		
	Background pollutant concentration	0	Given by the manual	
Jal	Expected effluent concentration	5		
	Current effluent concentration	15		
	Nitrates expected reduction	80%		
	Current reduction	31%		
s STS document				
s STS document				

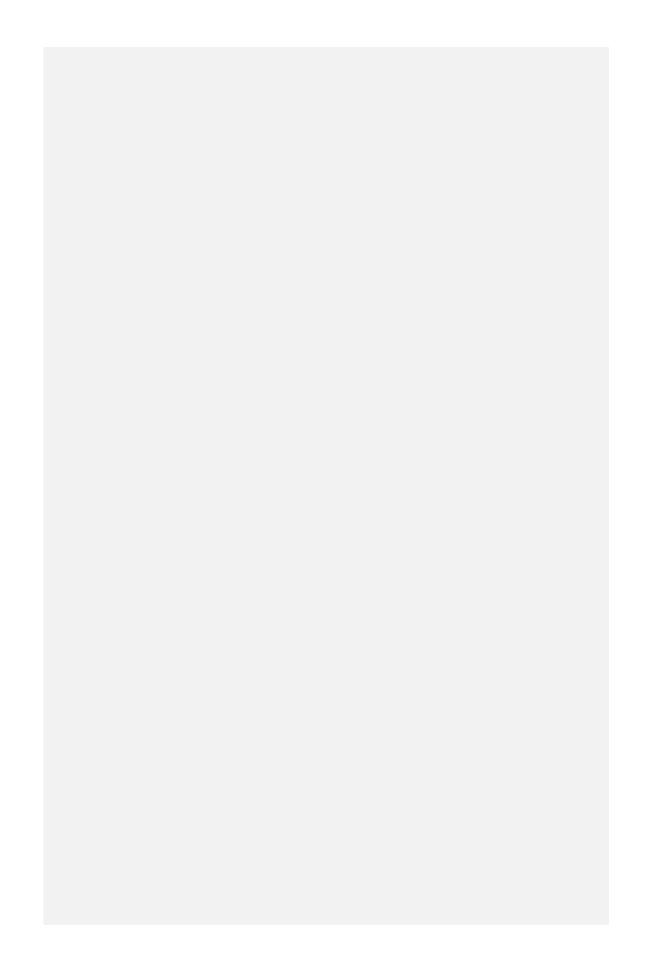
STS document

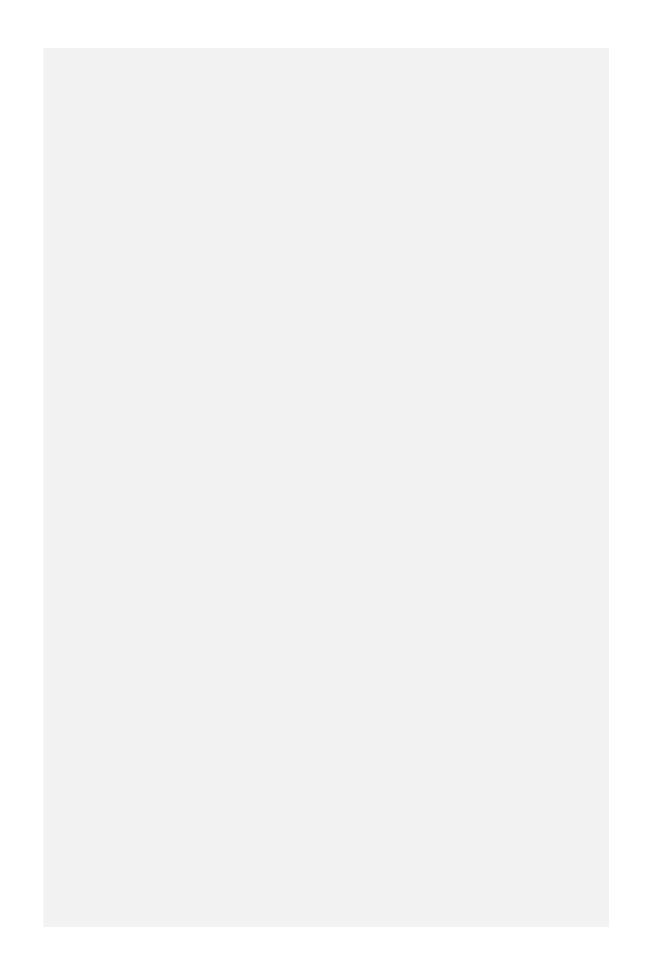

lau Jal

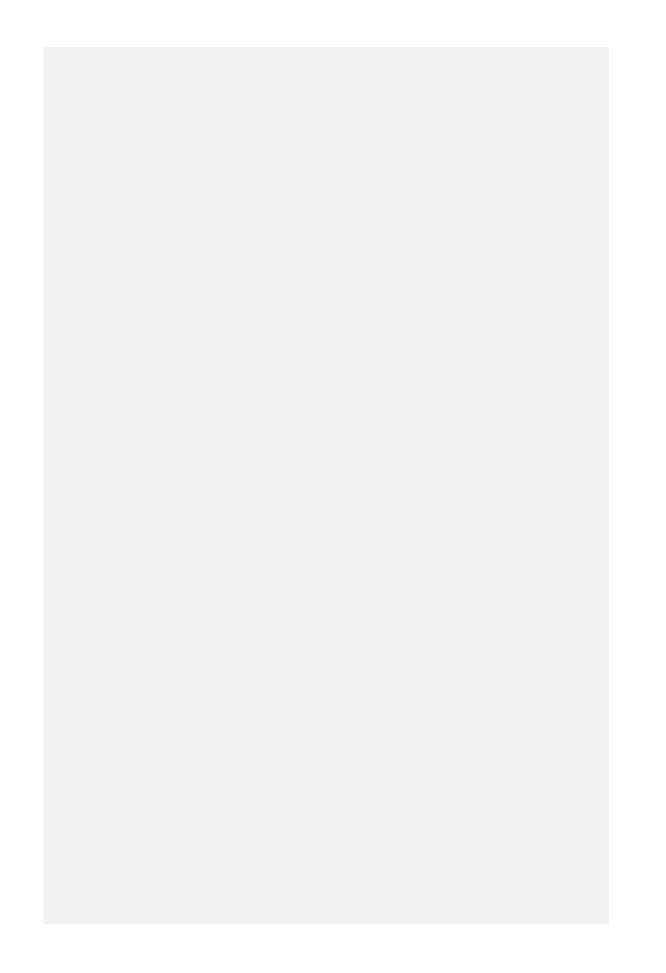
Jal


nt Analyses STS


STS document






ow as 1 is recommended for SSF (Hammer, 1990),

Maturation pond

Evaporation ratio hypothsesis

First pond				
	ft			
Top L1	100			
Bottom L1	85			
Top W1	41			
Bottom W1	26			
Top L2	21			
Bottom L2	6			
Top W2	48			
Bottom W2	33			
н	3			
	ft2			
Top Area	5147			
Bottom Area	2474			
	ft3			
Volume	13054			

Both ponds			
	ft2		
Top Area	8348		
	ft3		
Volume	21421		

Deele			100	
Desig				ions -
DCJE	, i cu	Cu	au	

Outlet flow including evaporation			
	m3/d		
	At average		
Maturation pond 1 outlet flow	28.0		

27.1
time
day
At average
13.2
8.7

Design review with Waste Stabilization Ponds and Constructed Wetlands Design Manual

Expected e. coli concentration			
	col/100ml		
Influent e. coli concentration, per 100 mL	75583		
	°C		
Temperature	21		
	per day		
First order constant	3.09		
	col/100ml		
Effluent e. coli concentration, per 100 mL	64		
Current effluent concentration	4000		
Pathogens expected reduction	99.9%		
Current reduction	91%		

Helminth egg removal			
% removal in the maturation pond	99.72		
% removal in the maturation pond 2	98.91		

Expected area			
	m2		
Expected area of maturation pond 1	357		
Current area of maturation pond 1	478		
Expected area of maturation pond 2	238		
Current area of maturation pond 2	297		

BOD surface loading for maturation pond 1			
	mg/l		
COD inlet concentration	2500		
BOD inlet concentration	1000		
	kg/ha.d		
Surface loading	242		
Maximum recommended BOD surface loading			
	С		
Temperature	21		
	kg/ha.d		
Maximum surface loading recommended	373		

mm/d	
29	

8 max http://www.formules-physique.com/categorie/335

Second pond	
	ft
Top L	77
Bottom L	63
Top W1	41
Bottom W1	26
н	3
	ft2
Top Area	3201
Bottom Area	1663
1.5 m recommended - Waste Stabilization Ponds and Const	ft3
Volume	8367

in	m
2	30.5
5	26.0
1	12.5
4	8.0
6	6.6
9	2.1
0	14.6
3	10.1
6	1.1
	m2
	478
	230
	m3
	370

m2
776
m3
607

At maximum
41.9

41.0

At maximum 8.8 5.8

5 days minimum recommended - Waste Stabilization Ponds and Constructed Wetland

Ne = Ni/((1+KbT*R1)*(1+KbT*R2))

From the document Analyses STS

Mean air temperature in the coldest month - mean temperature for January 2019 - https://www.accuw

KbT = 2,6*(1,19^(T-20))

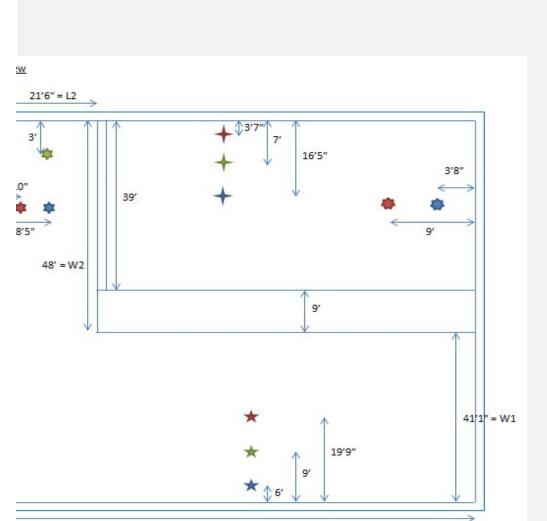
From the document Analyses STS

From the Analyses STS document

E=100*(1-0.41*exp(-0.49*R+0.0085*R^2))

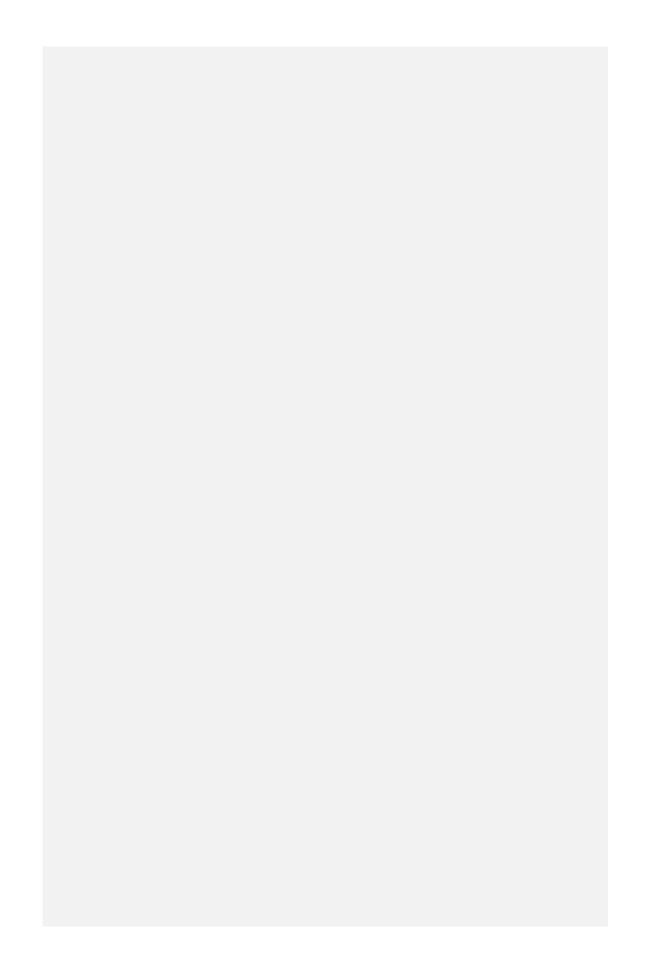
A = 2Qi * R /(2*D+0.001*e*R)

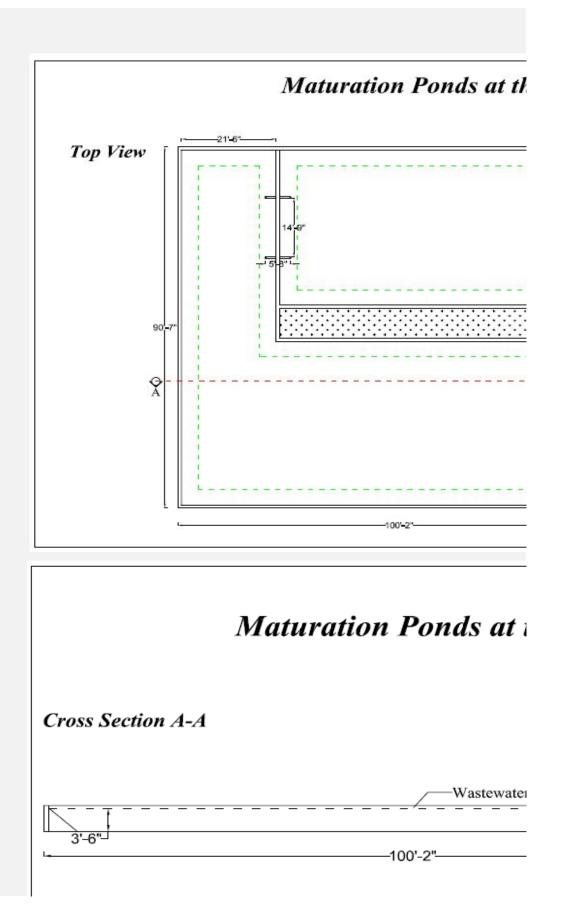
 $\lambda = 10^{*}(0.3^{*}Li)^{*}D/R$

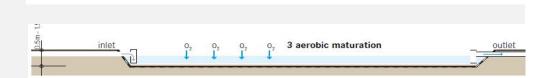

From the document STS analyses Extrapolation by Veolia fondation

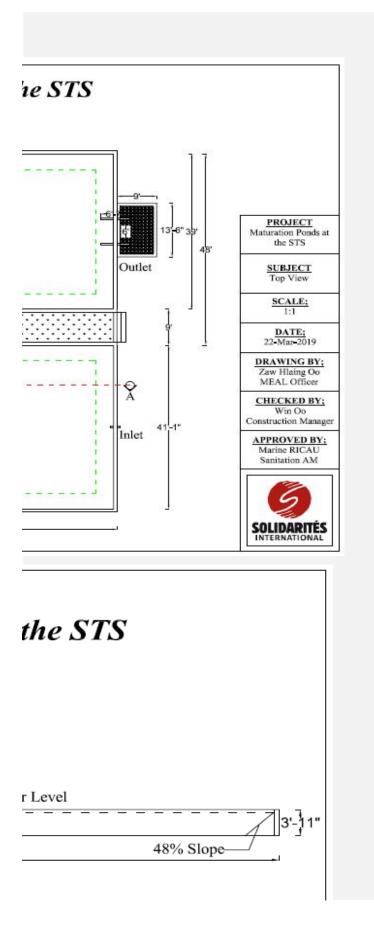
 $\lambda = 350^{*}(1.107 - 0.002^{*}T)^{(T-20)}$

			Slopes calculations			
			L4	3	7	1.1
in	m		D4	2	2	0.7
11	23.7		S4			60%
2	19.3		L5	7	0	2.1
1	12.5		D5	3	3	1.0
4	8.0		S5			46%
6	1.1	1-1.5 m recommended	L6	16	5	5.0
	m2		D6	3	8	1.1
	297		S6			22%
	155					
	m3		L11	6	0	1.8
	237		D11	2	7	0.8
			S11			43%
			L10	9	0	2.7
			D10	3	5	1.0
			S10	10		38%
			L9	19	9	6.0
			D9	3	6	1.1
			S 9			18%
			L8	3	8	1.1
			D8	2	6	0.8
			S8			68%
			L7	9	0	2.7
			D7	2	10	0.9
			S7			31%
			L1	3	0	0.9
			D1	1	5	0.4
			S1			47%
			L3	4	10	1.5
			D3	1	9	0.5
			S3			36%
			L2	8	5	2.6
			D2	3	6	1.1
			S2			42%
				Mean slope	1	48%


s Design Manual


veather.com/en/mm/sittwe-airport/631_poi/january-weather/631_poi




100'2" = L1

Depth		
*	1'5″	
*	3'6"	
*	1'9"	
+	2'2"	
+	3'3″	
+	3'8″	
4	2'10"	
4	2'6"	
★	3'6"	
*	3'5"	
\star	2'7"	

60	SUBJECT	PROJECT	Date	22 Mar 2019	
	Cross Section A-A	Connec Design of reaturation pends at the STS	Scale	13 Zaw Hising Oo MEAL Officer	
			Drawing By:		
			Checked By:	Win Oo Construction Manager	
INTERNATIONAL			Approved By:	Marine RICAU Serination Activity Mana	

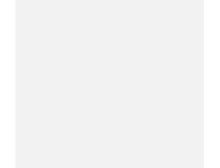
Infiltration basins

Basin 1					
	ft	in	m		
Side 1	25	0	7.6		
Side 2	29	10	9.1		
Side 3	34	0	10.4		
Side 4	32	0	9.8		
Height	1	6	0.5		
Effective height	0	6	0.2	Maximum	
	Degree				
Angle 1-2	116				
Angle 3-4	90				
	ft2		m2		
Area	879.2		82		
	ft3		m3		
Volume	439.6		12.4		

Design calculations

	mm/d					
Evaporation ratio hypothesis	2.9					
Hydraulic loadi						
	at average	at maximum				
	m3/year					
Yearly inlet flow	8470.3	12804.6				
	m/year					
Hydraulic loading rate	45.7	69.1	Between 15 and 10			

Operation


Flooding schedule				
	h			
Flooding time	4.5			
Drying time	19.5			
	at average at maximu			
	m3			
Inlet volume of each basin	13.6 20.5			
	m3/d			
Volume evaporated	0.53			

В	asin 2			
	ft	in	m	
Side 1	11	0	3.4	
Side 2	66	0	20.1	
Side 3	25	2	7.7	
Side 4	61	0	18.6	
Height	1	6	0.5	
Effective height	0	6	0.2	Maximum c
	Degree			
Angle 1-2	102			
Angle 3-4	98			
	ft2		m2	
Area	1115.2		104	
	ft3		m3	
Volume	557.6		15.8	
	Side 1 Side 2 Side 3 Side 4 Height Effective height Angle 1-2 Angle 3-4 Area	Side 1 Side 2 66 Side 3 25 Side 4 61 Height 1 Effective height 0 Degree Angle 1-2 98 ft2 Area 1115.2	ftinSide 1110Side 2660Side 2660Side 3252Side 4610Height16Effective height06Effective height102102Angle 1-2102102Angle 3-4981115.2Ft21115.21115.2	ftinmSide 11103.4Side 266020.1Side 32527.7Side 461018.6Height160.5Effective height060.2Angle 1-2102Angle 3-498-m2Area1115.2I04104Angle 3-4ft3In4

epending on the soil - Wastewater treatment and use in agriculture - FAO irrigation and drainage paper

of 0.2m recommended - Wastewater treatment and use in agriculture - FAO irrigation and drainage pa

47 - M.B. Pescod, 1992

per 47 -M.B. Pescod, 1992

Drying beds

	mm/d		
Evaporation ratio hypothesis	2.9	Around 5 mm/	d for moderate
Number of beds	6		
	ft	in	m
L	48	2	14.7
W	16	0	4.9
Height of sand	1	2	0.4
Height of gravels <0.5"	0	10	0.3
Height of gravels <2" and >0.5"	0	6	0.2
	ft2		m2
Area	4624		430

Slopes			
	ft	in	m
Height 1	4	5	1.3
Height 2	5	0	1.5
Length	7	2	2.2
Slope to reach pipe (inlet side)			8%
Height 1	4	10	1.5
Height 2	5	2	1.6
Length	7	2	2.2
Slope to reach pipe (outlet side)			5%
Height 1	5	7	1.7
Height 2	5	10	1.8
Length	48	2	14.7
General slope (inlet to outlet)			1%

Design calculations

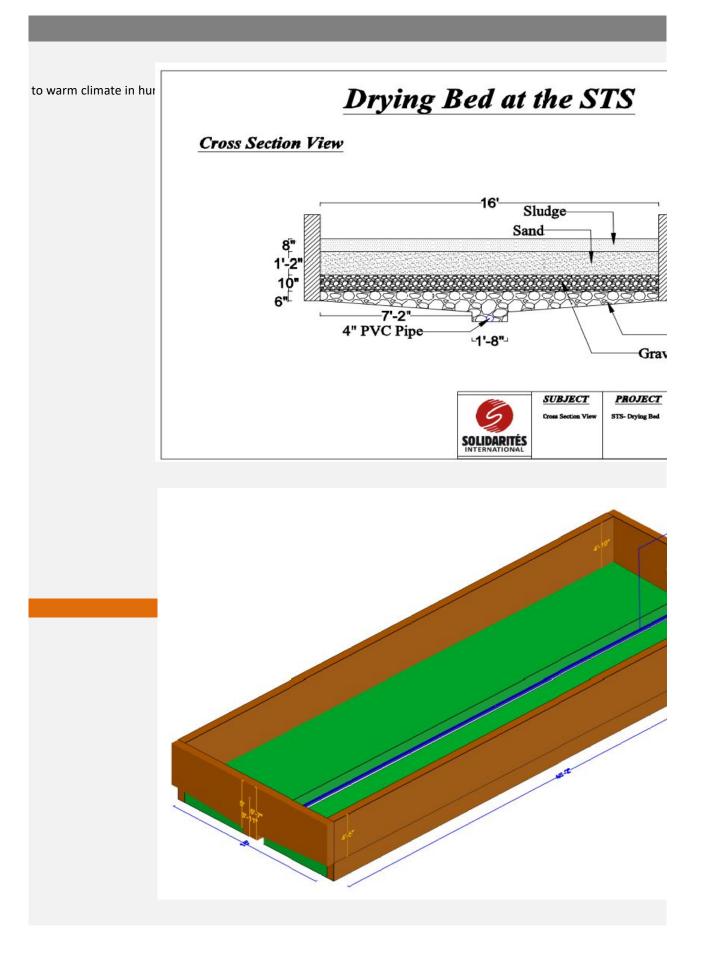
HBT desludging		
	m3/d	
Volume extracted at average	5.5	
Volume extracted at maximum	17.6	
Percentage of total volume desludged on bed per day	90%	

ABR desludging		
	m3/d	
Volume of sludge removed from ABR	0.6	
Percentage of total volume desludged on bed per day	10%	

Reduction of TS	
	g/l
Concentration of TS in the effluent of HBT	50

Water reduction 80%	Concentration of TS of the ABR sludge	50	
	Concentration of TS in the dryed sludge after a drying cycle	250	According to the document Ar
Volume reduction 44%	Water reduction	80%	
	Volume reduction	44%	

Drying cycle duration			
	in	m	
Depth of sludge for one loading cycle = one bed	8	0.2	Operation p
	m3/cycle		
Volume of sludge for one cycle	14.5		
	cycle/year		
Number of cycles per year	131		
	Days		
Filling phase duration	2.4		
	Weeks		
Drying phase duration	2.0		
Total cycle duration	2.4		


TS loading		
	kg/cycle	
TS loading for one cycle	727	
	tons/year	
Total load to be dryed	95	
	kg/m2	
TS loading per loading cycle	10	Maximum recommended 1!
	kg/m2.year	
TS loading	221	Maximum recommended 20

Theoretical approach		Veolia Fonda	tion
Water reduction repartition			
	m3/d		
Evaporated water	0.205		
	m		
Depth of sludge at the end of a drying cycle	0.041		_
	m3/cycle	% of total cycl	e flow
Volume of sludge at the end of a drying cycle	2.9		
Volume of solid sludge at the end of a drying cycle	0.7	5%	
Volume of free & trapped water at the end of a drying cycle	2.2	15%	
Leachate per cycle	8.9	61%	Volume reduc
Volume of evaporated water per cycle	3.4	24%	Volume reduc
	m3/d		
Average flow of leachate infiltrated	3.2		

Operation

Operation		
	days	
Filling phase duration	4.9	See document Drying cycles
	weeks	
Total cycle duration	3.4	See document Drying cycles
Drying phase duration	2.7	
	cycle/year	
Number of cycle per year	92	
	tons/year	
Total load to be dryed	67	
	kg/m2.year	
TS loading	156	Maximum recommended 20

Practical approach		The differenc	e between the
Water reduction repartition			
	m3/d		
Average flow of leachate infiltrated	1.2	Data from 1 t	o 03/01/19 (se
	in	m	
Depth of sludge at the end of a drying cycle	4.5	0.11	Data from the
	m3/cycle	% of total cycl	e flow
Volume of sludge at the end of a drying cycle	8.18		
Volume of solid sludge at the end of a drying cycle	2.05	14%	
Volume of free & trapped water at the end of a drying cycle	6.14	42%	
Leachate per cycle	2.87	20%	Volume reduc
Volume of evaporated water per cycle	3.50	24%	Volume reduc
	m3/d		
Evaporated water per cycle	0.21]	
	mm/d		
Evaporation ratio	2.92		

nalyses STS

rameter

5kg/m2 - De Bonis report

00kg/m2.year - De Bonis report

tion of 50 to 80% due to drainage - Heinss et al. (1998) tion of 20 to 50% due to evaporation - Heinss et al. (1998) of drying beds 12 2018-04 2019

of drying beds 12 2018-04 2019

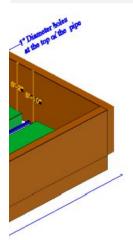
00kg/m2.year - De Bonis report

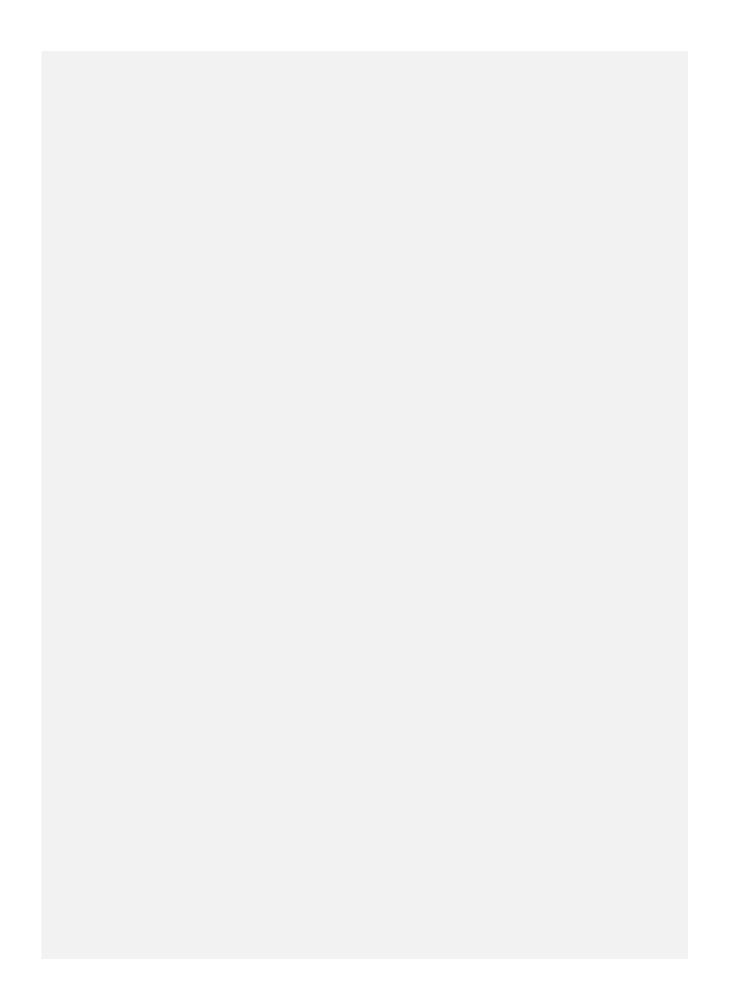
theoretical and practical approaches could be due to the clogging of the filters

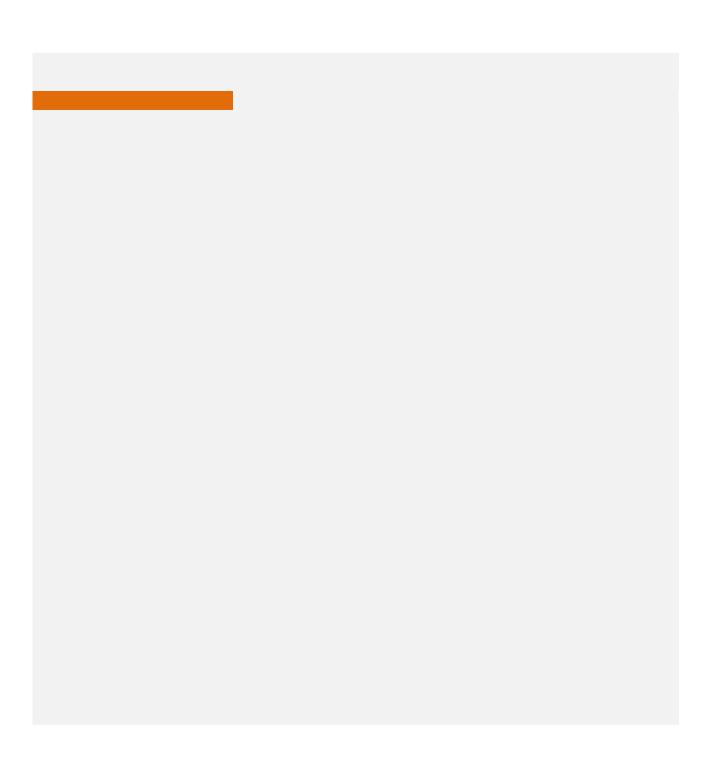
e document Inlet flow secondary constructed wetlands)

e 01/22/19 to 3/27/19

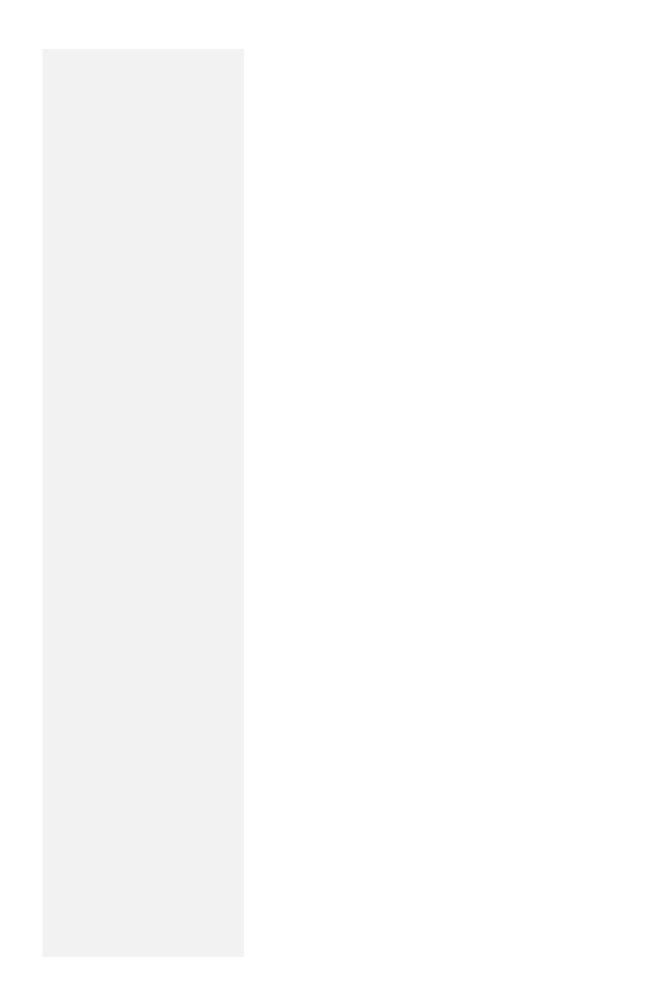
tion of 50 to 80% due to drainage - Heinss et al. (1998) tion of 20 to 50% due to evaporation - Heinss et al. (1998)

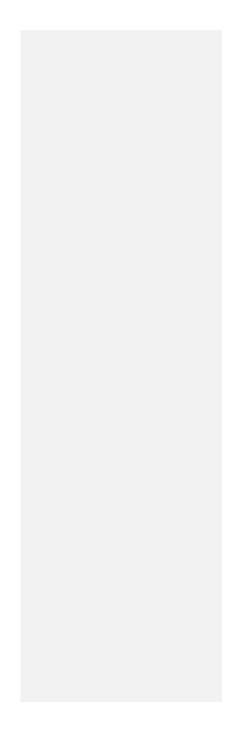

	Evaporation test		
- FAO Irrigati	Length	1.021 ft	311.2008
	Width	0.771 ft	235.0008
	Height of water evaporated 1	0.125 in	3.175
	Height of water evaporated 2	0.1 in	2.54
	Evaporation time		1
	Evaporation ratio		2.9


Permeability test - time for water to go throught the sand		
Dirty sand - 5 years use	35 s	
Clean sand	13 s	
Permeability increase ratio	63%	



Gravels>0.5"<2" vels<0.5"


Date	February-2018
Scale	1:1
Drawing By:	Zew Hlaing Oo MEAL Officer
Checked By:	Win Oo Construction Manager
Approved By:	Marine RICAU Sanitation AM



mm		
mm		
mm mm		
day mm/d		
<u>, u</u>		

Secondary Horizontal Co	onstructed Wetland
-------------------------	--------------------

	mm/d
Evaporation ratio hypothesis	0.5
Number of CW	1
	ft
L	28
L of gravels of more than 1.5"	8
L of gravels between 0.5" and 1.5"	20
W	28
H of gravels	1
H of water	0
	ft
Area	808
Volume for 1 bed	
	- / -
	m3/d
Quality de la file file en entre	Average
Outlet daily flow after evaporation	3.17
ign calculations	
Porosity of gravels (0.5" to 1.5")	
	L
Volume of empty bucket	13
Volume of water poured when the bucket is filled with gravels	5.6
Porosity	43%

Porosity of gravels (more than 1.5")		
	L	
Volume of empty bucket	13	
Volume of water poured when the bucket is filled with gravels	5.7	
Porosity	44%	

Retention time	
	m2
One bed area for gravels of more than 1.5"	21
One bed area for gravels between 0.5" and 1.5"	54
	days
Retention time	0.77

Design review with 'UN Habitat 2008' and 'Waste Stabilization Ponds and Constructed Wetlands Desi

Pollutants removal

Des

UN Habitat 2008

Ce= Ci / exp(A * Kbod / Q)

BOD removal

	mg/l
Influent COD concentration	1000
Influent BOD5 concentration	400
	m/d
Rate constant	0.15
	mg/l
Expected BOD5 effluent concentration	12.003
Effluent obtained	400
Reduction of BOD5 expected	97.00%
Reduction obtained	2%

Ce= Ci * (0,106 + 0,11 * AHLR)	
TSS removal	
	mg/l
Concentration of TSS in the influent	60
	m/d
Aerial hydraulic loading	0.0428
	mg/l
Expected concentration of SS in the effluent	7
Current concentration of TSS in the effluent	600
TSS expected reduction	89%
Current reduction	Increase

The area is over dimensioned for the current flow and inlet concentrations (high reduction expected But the constructed wetlands are not reaching the result expected by design on BOD5, TSS

Ce = Ci * exp(-0,126*(1,008)^(T-20)*R)

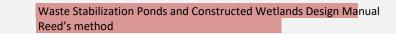
NH4 removal		
	mg/l	
Concentration of ammonia in the influent	500	
	Degree Celcius	
Minimum mean temperature	21	
	mg/l	
Expected concentration of ammonia in the effluent	453	
Current concentration of ammonia in the effluent	400	
Ammonia expected reduction	9%	
Current reduction	16%	

The first method gives the closest results to what is currently obtained for Ammonia removal **Flow calculation** Waste Stabilization Ponds and Constructed Wetlands Design Manual - Reed's method UN Habitat 2008 Q = Ac * K * S Expected inlet flow according to design m2 Cross sectional area of the bed 3.5 m/s Hydraulic conductivity of the bed 0.002 m/m Slope of bottom of the bed 0.01 m3/d Expected inlet flow 6.1 **Current inlet flow** 3.2 The area and cross sectional area are bigger than necessary However the constructed wetlands are not reaching the result expected by design on BOD5 **BOD** loading rate

UN Habitat 2008

Expected BOD5 loading rate according to design	
	mg/l
Influent BOD5 concentration	400
	g/m2.d
Maximum recommended BOD5 loading	11
	g/m2.d
BOD5 loading rate according to design	g/m2.d 17.1
BOD5 loading rate according to design Expected BOD5 loading rate with expected inlet flow	17.1
	17.1
	17.1 32.4

Recommended design for current parameters


Waste Stabilization Ponds and Constructed Wetlands Design Manual - Reed's method

UN Habitat 2008	
Ac = Q / (K * S)	
Recommended sizing of the CW	
	m3/s
Daily flow average	0.000037
	m/s
Hydraulic conductivity of the bed	0.002
	m/m
Slope of bottom of the bed	0.01
	m2
Cross sectional area of the bed	1.9
	m
Recommended total width	4.6
Recommended number of beds	1
Recommended width per bed	4.6
Recommended length	16.4
Current total width	8.7
Current number of beds	1
Current width per bed	8.7
Current length	8.7

in	m	
5	8.7	
0	2.4	
5	6.2	
5	8.7	
4	0.4	
3	0.1	٦
	m2	
	75	
	m3	
	30	

gn Manual' guidelines

The water flow is maintained approximately 15 – 30 cm below the bed surface - m V

Ce = Ci * exp (-A*Kt*y*n/Q)

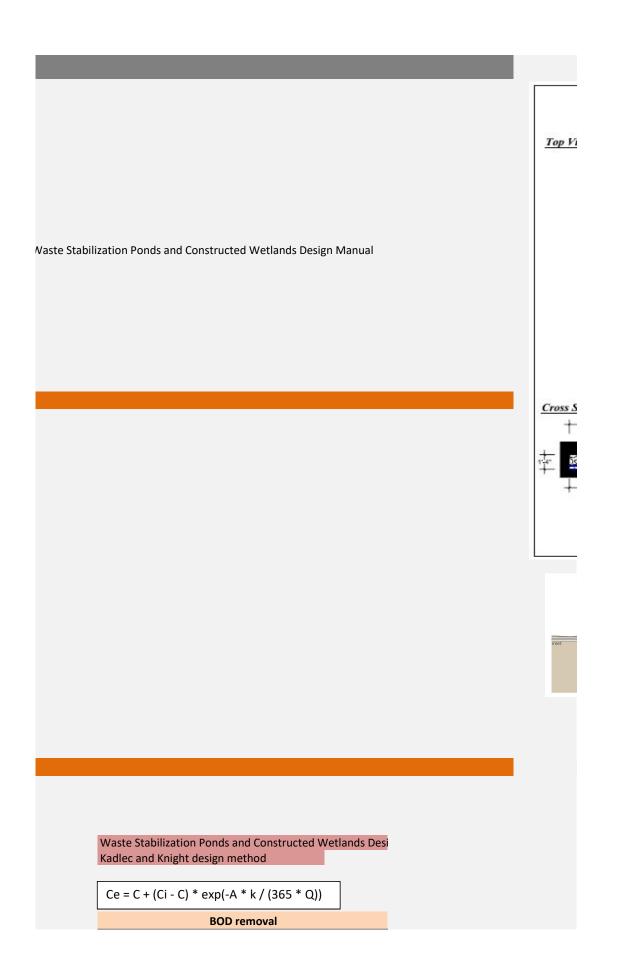
 $Kt = Kr * \theta r^{Tw-Tr}$

BOD removal

			_		
				C	
According to the document Analy			_	21	Same as air tem
Extrapolation by Veolia fondation			_	20	Given by the ma
	Temperature coeficient for rat	te cons	tant	1.06	Given by the ma
	Data at reference to			per day	
	Rate at reference te		_	1.104	Given by the ma
Association to the desument Analy	Rate constant at te			1.17	
According to the document Analy		Porc	osity	0.43	
According to the document Analy	Influent con	contra	tion	mg/l 400	
According to the document Analy.	Expected effluent con		_	3.189	
	Current effluent con		_	400	
	Reduction of BOD		_	99.2%	
	Reduction			2%	
			incu	270	
	Ce = Ci * (0.1058 + 0.001 * HLR)	7 [HLR	= 100*Q/A	_
	TSS remova	L			
	155 Telliova			cm/d	
According to the document Analy	Hydraulic lo	oading	rate	4.28	
,				mg/l	
	Influent con	ncentra	tion	60	
	Expected effluent con	ncentra	tion	7	
	Current effluent con		_	600	
According to the document Analy	TSS expected	d reduc	tion	89%	
	Current	t reduc	tion	Increase	
According to the document Analy					
l	Ce = Ci * exp (-A*Kt*y*n/Q)				* (rz)^2.6077
		Kt = ł	<nh *<="" td=""><td>θr^(Tw-Tr)</td><td></td></nh>	θr^(Tw-Tr)	
	NH4 remova	al			
				С	
According to the document Analy	Water te	mpera	ture	21	
	Reference temperature			20	Given by the m
mean temperature for January	Temperature coeficient for rate constant			1.048	Given by the m
	Depth of bed occupied by	y root z	one	0	No plants, in %
				per day	
According to the document Analy	Nitrification rat	te cons	tant	0.019	
	Rate constant at te	mpera	ture	0.019	
According to the document Analy		Porc	osity	0.43	
				mg/l	
	Influent con	ncentra	tion	500	

		_
Current effluent concentration	400	
Ammonia expected reduction	8%	
Current reduction	16%	
Ce = Ci * exp (-A*Kt*y*n/Q)	θr^(Tw-Tr)	
	- ()	
NO3 removal		
	С	
Water temperature	21	
Reference temperature	20	Given by the m
Temperature coeficient for rate constant	1.15	Given by the m
	per day	
Rate at reference temperature	1.00	Given by the m
Rate constant at temperature	1.15	
Porosity	0.43	
	mg/l	
Influent concentration	150	From the Analy
Expected effluent concentration	1.3003	
Current effluent concentration	150	From the Analy
Nitrates expected reduction	99.1332%	
Current reduction	Increase	From the Analy

For graded gravels a value of Kf of 1 x 10-3 to 3 x 10-3 m/s is normally chosen. Here 2 x 10-3 m/s was chosen


In most cases, a dH/ds of 1% is used - not measured

5, TSS and NO3

According to De Bonis report

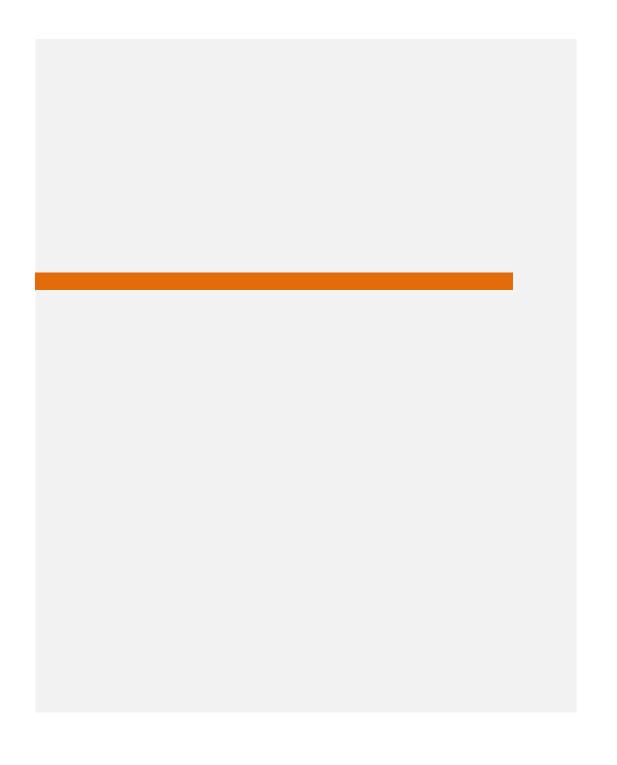
For graded gravels a value of Kf of 1 x 10-3 to 3 x 10-3 m/s is normally chosen. Here 2 x 10-3 m/s was chosen

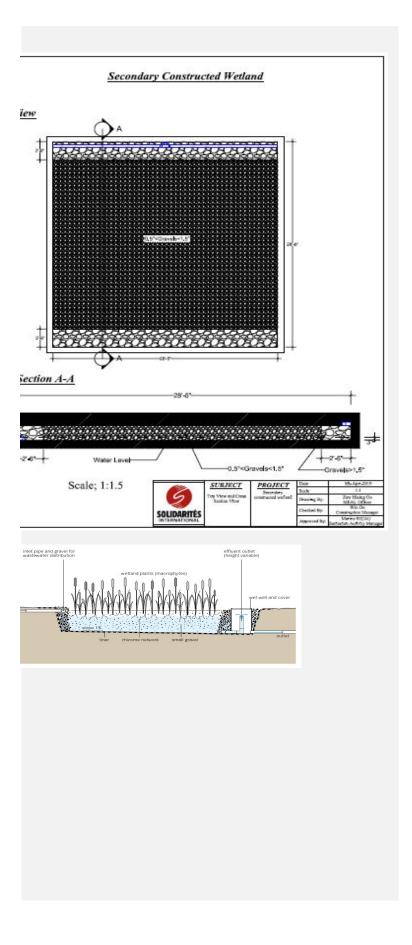
In most cases, a dH/ds of 1% is used

		m/year	
perature	First order aerial rate constant	180	Given by the manua
nual		mg/l	
nual	Influent concentration	400	
	Background pollutant concentration	25	
nual	Expected effluent concentration	25	
	Current effluent concentration	400	
	Reduction of BOD5 expected	94%	
	Reduction obtained	2%	

Ce = C + (Ci - C) * exp(-A * k / (365 * Q))		
TSS removal		
	m/year	
First order aerial rate constant	1000	Given by the manual
	mg/l	
Influent concentration	60	
Background pollutant concentration	12	
Expected effluent concentration	12	
Current effluent concentration	600	
TSS expected reduction	81%	
Current reduction	Increase	

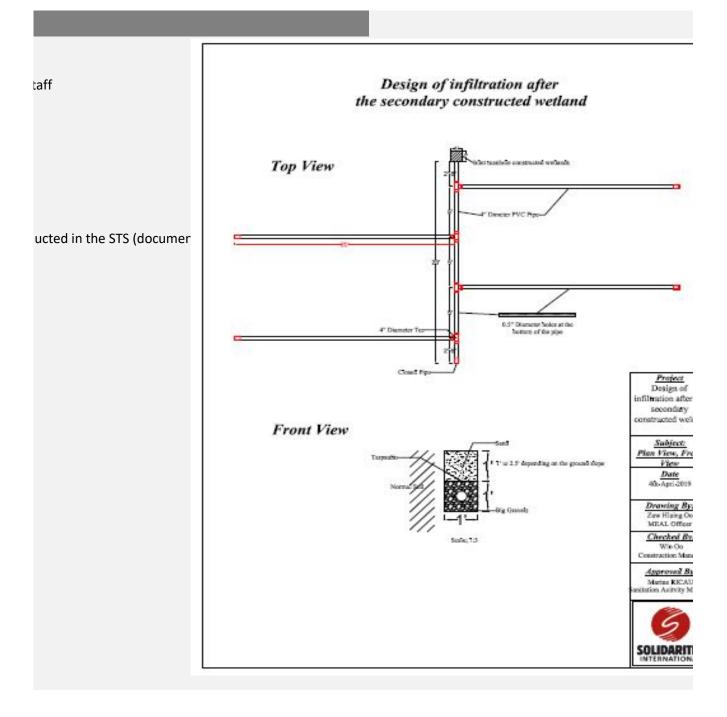
Ce = C + (Ci - C) * exp(-A * k / (365 * Q))


	NH4 removal		
		m/year	
	First order aerial rate constant	34	Given by the manual
anual		mg/l	
anual	Influent concentration	500	
	Background pollutant concentration	0	Given by the manual
	Expected effluent concentration	57	
	Current effluent concentration	400	
	Ammonia expected reduction	88.7%	
	Current reduction	16%	


	Ce = C + (Ci - C) * exp(-A * k / (365 * Q))		
	NO3 removal		
		m/year	
	First order aerial rate constant	50	Given by the manual
anual		mg/l	
anual	Influent concentration	150	
	Background pollutant concentration	0	Given by the manual
anual	Expected effluent concentration	6.101	
	Current effluent concentration	150	
	Nitrates expected reduction	95.93%	
	Current reduction	Increase	

ses STS document

ses STS document


ses STS document

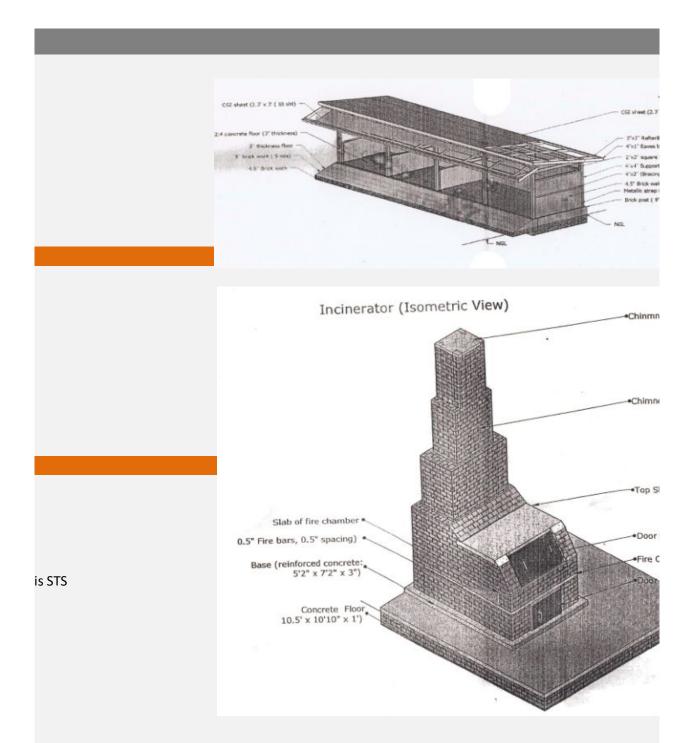
Infiltration trenches

Number of trenches	5			Design from the memory of STS st
	ft	in	m	
L	20	0	6.1	
W	1	0	0.3	
н	1	0	0.3	
	ft2		m2	
Area of infiltration	400.0		37.2	
	ft/h		mm/h	
Infiltration rate of the ground	0.2		61.2	Following an infiltration test cond
	ft3/h		m3/h	
Infiltration rate of the trenches	80.3		2.3	
			m3/d	
Average inlet flow			3.17	

Sludge storage

Number of storage unit	5		
	ft	in	m
L	7	7	2.3
w	15	1	4.6
Heff	3	1	0.9
	ft3		m3
Volume per case	352.7		10.0
Total Volume	1763.4		49.9

Design calculations


Retention time		
Number of unit for dried sludge	4	
Number of beds desludged per empty case	3.4	
Number of case filled per year	38.1	
	times/y	
Frequency of filling per case per year	9.5	
	Months	
Retention time	1.3	

Operation

Volume of sludge to incinerate		
	m3/y	
Newly extracted sludge	380.0	
	g/l	
Siccity of dryed sludge when incinerating	600	According to the document Analys
	m3/y	
Dried sludge after retention time flow per year	158.3	
	d/week	
Number of incineration day per week	6	
	m3/d	
Sludge volume to be incinerated	0.507	
	buck/d	
Number of buckets to be incinerated	26	

Volume of ashes to store			
Volume reduction after incineration	78%		
	m3/y		
Volume of ashes to store	35		
Number of unit for ashes	1		
	m3		
Volume of storage for ashes	10		
	month		

Time to fill the unit	2.4
lime to fill the unit	3.4

Calculation of volume reduction after incineration

	L
Volume of a bucket for sludge	19.5
Number of buckets incinerated	15
Volume of sludge incinerated	292.5
Volume of a bucket for ashes	13
Number of ashes buckets remaining	5
Volume of ashes remaining	65

Volume reduction	78%

vey Lid (Reinforced concrete :1.5' x 1.9' x 2")

ey: 9' x (4.5" thick brick wall)

lab (Reinforced concrețe : 2.5' x 4.5' x 3")

.

for Loading refuse (iron :2'10" x 1'8" x 2")

Chamber slab (reinforced concrete : 3'3" x 4.5' x 3")

of fire chamber (iron : 1'10" x 1'4" x 2")

