

BIOLOGICAL ADDITIVES TO ENHANCE SANITATION FACILITIES LIFESPAN IN REFUGEE CAMPS

Murray Burt – UNHCR

The Product - LICE

- The Consortium LICE contains selected natural microorganisms (10⁶ to 10¹² CFUs) seeded in a mineral absorbent's internal cavity: <u>Zeolite</u>
- Consortium Lice SM consists of aero-anaerobic microorganisms selected for their ability to quickly digest the organic matter of septic tanks or latrines. These microorganisms are simple Saprophytes of Group 1 of the infectious agents' classification.
- The Zeolite protects the exogenous microorganisms (as a shell) from the endogenous microorganisms brought with the faecal organic matter, with which they are in competition.
- The Zeolite can absorb up to 40% compared with its initial volume without disturbing its internals cellular walls.
- The Zeolite thus works like a vacuum cleaner in constant mode and attracts pathogens and organic material to break down completely.
- When the Co/Lice is setup at the start-up of a latrine, the exogenous are in higher number, take the place of the endogenous and block the sludge accumulation.

LICE – Prior Product Testing

Ivory Coast

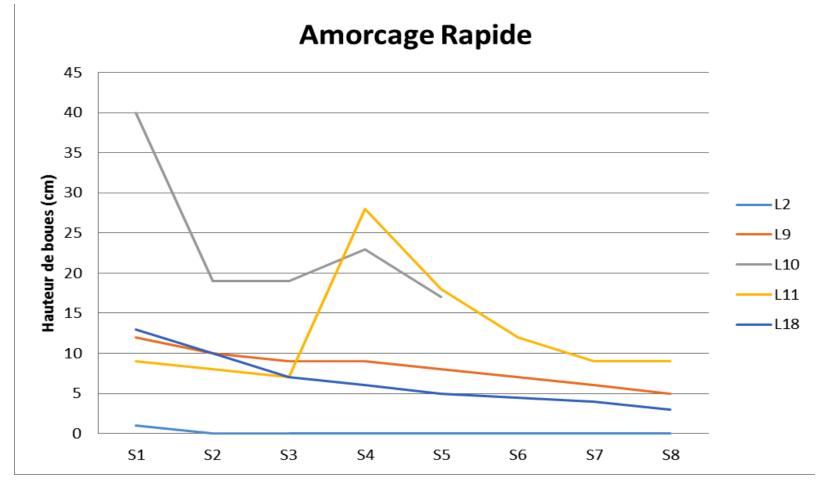
- LICE was used in Ivory Coast for a trial period of 3 months (Sept-Dec 2013), in partnership with the IC Red Cross & IFRC, to reduce the sludge volume in school latrines connected to a holding tank.
- Volume of excreta measured in the holding tank at the start of the project: 3 m3, (2m x 4.5m v 0.33 m excreta height in the pit), treated with 3.6 kg of bacterial additive.
- Volume of excreta measured after 12 days after the inoculation dose: 0.27 m3, (2 m x 4.5m x 0.03 m height of excreta in the pit).

After 12 days, the reduction of the sludge volume was already 90% + total loss of smell

After 2 years from the end of the piloting (as of 25 May 2015), the volume is still 0,27 m3 (1 cm sludge height) without any additional seeding + no smell

LICE piloting

LICE – FIELD TRIAL CHAD


PHASE I - CHAD

- Context of the pilot: Southern Chad Dosseye Refugee Camp
- Rational: 37% open defecation practice caused by poor maintenance and bad smell of latrines
- WASH Partner supporting with the monitoring phase: CARE
- Dates: 16 April 4 June 2015 (50 days)
- Number of pit latrines tested: 5 in rapid priming, 5 slow priming, 10 blanks
- Results: 46% volume reduction & no smell
- Limitations: uncontrolled testing, wrong understanding of the protocol & nonregular number of users per latrine

LICE: UNHCR BIO-ADDITIVE FIELD TRIAL

PHASE I – Results (fast priming)

LICE piloting - Tchad

LICE: UNHCR BIO-ADDITIVE FIELD TRIAL (1) UNHCR

PHASE II - CHAD

- Repeat with fixed number of users per latrines and respecting the protocol
- Dates: 31 August 2015 31 March 2016
- Number of pit latrines tested: 5 in rapid priming, 5 slow priming, 2 blanks
- Results:
 - 100% volume reduction in rapid priming latrines & no smell
 - 100% volume reduction in slow priming latrines & no smell
- Limitations: some latrines dried up (L1, L2 and L6) & needed additional water injection

LICE: UNHCR BIO-ADDITIVE FIELD TRIAL 🐠 🛄

MONITORING PHASE- CHAD

- Stopped injection of LICE in March 2016 in the 10 latrines
- 7 months later, on Oct 29th 2016 the results showed:
 - In 3 out of 10 latrines the height of the excreta in the pit is stable (users diminished from 12 to 8)
 - In 2 out of 10 latrines, the excreta level has increased of 5-10 cm only (users halved)
 - In the remaining 5 latrines an increase in the excreta level was observed, which represents 1/3 of the level observed in the 2 blank / control latrines.

FIELD TRIAL LIMITATIONS

Many uncontrolled variables:
Variable number of latrine users.
Changes in moisture content.

Incorrect/variable rates of LICE dosing.

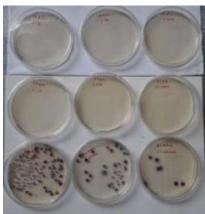
Means questionable results.

 Therefore need for a more scientific robust controlled field laboratory studies.

BIOLOGICAL ADDITIVE CONTROLLED FIELD LABORATORY TRIAL

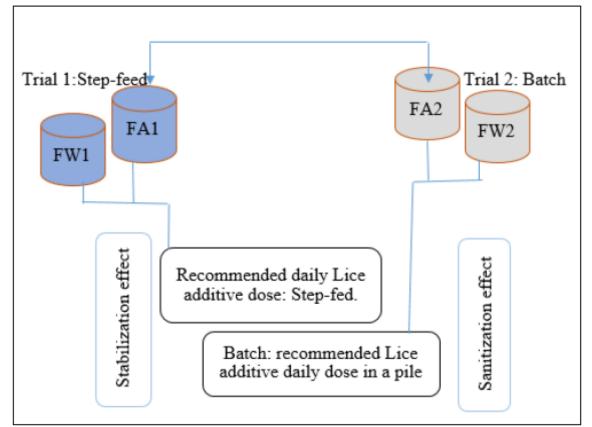
- The Objective to test the effect of biological additives on waste in pit latrines.
- Specifically:
 - Reduction in waste volume (to extend life of pit latrine)
 - Reduction in odor
 - Reduction in flies
 - Increased rate of sanitization (pathogen die-off)

BIO/CHEMICAL ADDITIVES RESEARCH



UNHCR PARTNERSHIP WITH UNESCO-IHE

- Combined laboratory scale field research - deployment of 2 students from UNESCO IHE (Kenya – Naivasha/Sanivation) in Dec 2015 and Jan 2016 using:
 - Chemical additives: Ikati and Soda
 - Biological additives: LICE, Sannitree, Ecotreat
- Objective: in 6o days quantification of the reduction of volume and odor. Reduction in total volatile solids, COD, E. coli and fly attraction was also determined.

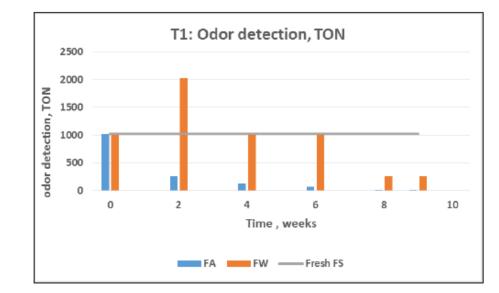


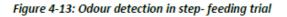
Methodology

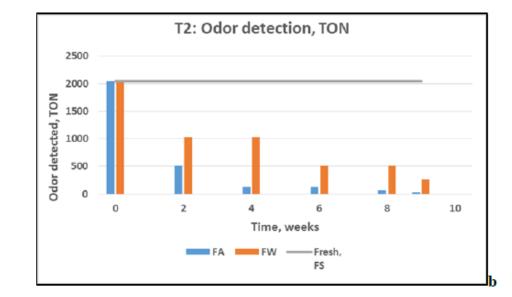
- Fresh sludge from Sanivation toilets and Naivasha Prison.
- Controlled dosing in 20L plastic buckets (x3) to simulate pit latrines
- Mesurement of volume / weight
- Odour Test
- Fly Attraction Test
- Ecoli measurement

FA = Faecal sludge + additive FW= Faecal sludge and water only (Control) All trials are in triplicates and in 5 sets in both T1 and T2.

Figure 3-5: Field Experiment: Schematic for Stabilization and Sanitization.


So summarising;


Trial 1: Step-feed -9 weeks quick priming - and daily dosing


Trial 2: Batch 1 - 8 weeks - dosed once but in layers of the recommended dose.

Odour

Significant effect of LICE on odour reduction at 95% confidence level in both step and batch trials

Fly Attraction

 Significant effect of LICE on odour reduction at 95% confidence level in both step and batch trials.

Fly attraction is related to odour.

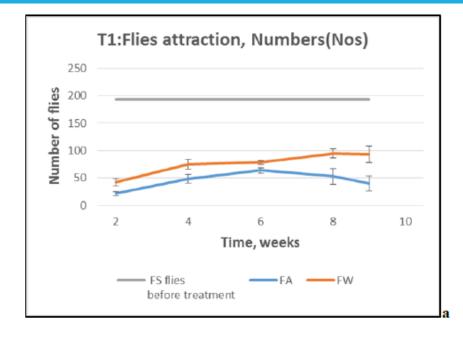
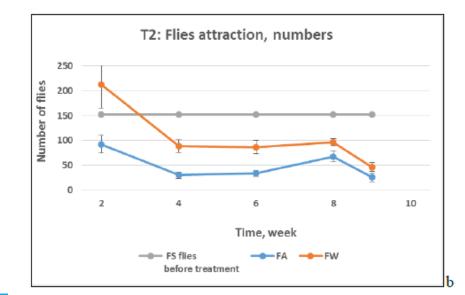



Figure 4-15: T1: Flies attraction, numbers.

Volume

 No statistically significant (p>0.05) effect of LICE on reduction in sludge depth (volume) in both step and batch trials over 60 days.

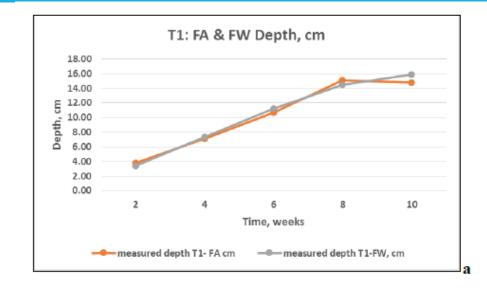
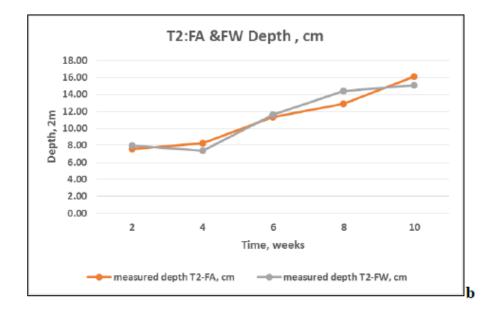



Figure 4-20: comparing measured depth, cm for FA & FW in T1.

Mass

 No statistically significant effect (p>0.05) of LICE on reduction in sludge mass (weight) in both step and batch trials over 60 days.

 Weight reduction attributed to natural decay.

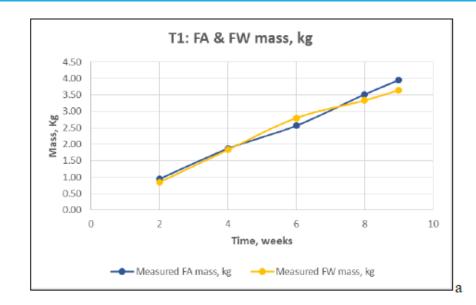
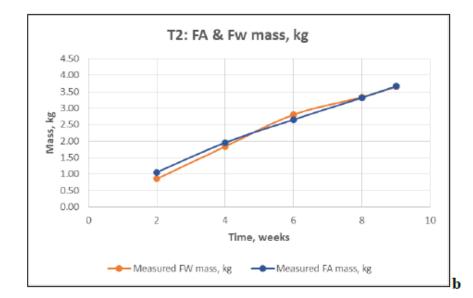



Figure 4-17: T1 (FA &FW) measured mass, kg

Ecoli

No statistically significant effect (p>0.05) LICE on Ecoli (CFU) concentrations in both step and batch trials over 60 days.

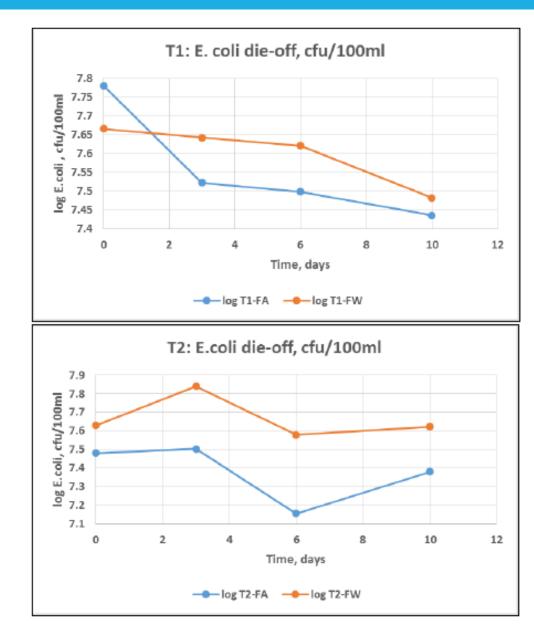


Figure 4-11: E. coli die-off in 10 days.

Cost

Product Cost EUR620/m³ of sludge treated

• With addition of labour and transport costs may be up to EUR EUR7,000/m³

• RESULT: LICE achieved a 17% odour and fly attraction reduction.

Comparative Results (UNESCO)

- LICE (most expensive)
- Lime
- Ammonia
- Lactic Acid
- Ikati (best Ecoli reduction)
- Soda
- Ecotreat

• Ash

Comparison performance of additives										
ld	Attribute	Criteria	Lice	Lime	Ammonia	Lactic acid	lkati	Soda	Ecotreat	Ash
References				(Nobela, 2015)	(Perez, 2015)	(Malambo,2 015)	(Kemboi, 2015)		(Zindoga, 2016)	
1	Sludge stability [%]	VS/TS ≤0.6	**46.18±9 [T2]	[-]	6	[-]	35	40	66.8	58.4
2	Sanitization	E.coli ≤ 3 log	5	< log 3	< log 3	< log 3	3	3.2	9.80E+07	1.67E+07
3	Sanitization time [days]	t≤ 30-60 days	N/A	2 hours	4 to 8 days	7 to 15 days	7	7	N/A	N/A
3	Final pH value [-]	4 ≤pH≥9.5	5.95±8	11-12.5	9-9.5	3.8-4.2	9	9.5	6	7.3
	Depth,		14.8±0.2	[-]	[-]	[-]	[-]	[-]	6.4	6.7
4	Odor [TON]	lowest TON achieved	16	[-]	F)	H	[-]	[-]	1818	444
5	Fly attraction reduction [numbers]	lowest count	40±14	[-]	[-]	[-]	[-]	[-]	81/m2	5/m2
e	Technology base		Biological	chemical	Bio- chemical	Biological	chemical	chemcal	biological	
7	, Purchase price per kg, [€]	less than € 10	€28/kg[25- 500kg] [€7.000/m ³ FS)	€12/m ³ [[] 25kglime]	€16/m ³ (20kg urea)	€31.20/m ³ [1001 milk] and € 2.20/m3 [1001 molasses]	8.5/ m ³	13/m ³	€ 120.4/m ³	unknown
ę	Robustness of technology	Stabilityand sanitization ≤ 60 days	not attained	[-]	[-]	[-]	[-]	[-]	not attained	
10) Shortfalls		Protocol difficult to interpret and or daily use	Temperatur e dependnet	initial homogen eous mixing	initial homogeneo us mixing	Bacteria regrowth	absorbs moisture	deployment restrictions	solids accumulai on
11	Disposal method	Reusability	Agriculture	soil conditioner	Fertiliser	inoculum for subsequent treatments	unknown	unknown	Inoculum	Agricultur
12	Suitability in 2 emergency [score]	highest compliance with criteria	4	9	8	6	10	8	1	N/A

RESEARCH RESULTS SUMMARY

UNHCR PARTNERSHIP WITH UNESCO-IHE

- LICE could considerably <u>reduce odour</u> and flies (95%-100% reduction) in fresh faecal sludge, nevertheless, <u>no stabilization or sanitization</u> could be achieved, potentially due to the non-optimal ambient conditions (temperature below the optimal 37°C, which might have inhibited exogenous bacteria).
- Promising results on Ikati to accelerate sanitization of faecal sludge, though further optimization of the dosing is needed to prove impact.
- <u>No evidence was found to support the claim that LICE (or the other Bio-Additives) can</u> accelerate volume or mass reduction rate of fresh faecal sludge.

RESEARCH CONCLUSIONS

UNHCR PARTNERSHIP WITH UNESCO-IHE

- LICE has a potential for reduction of <u>odour and fly</u> <u>attraction (disease vectors)</u>.
- Further evidence is required to determine the conditions where LICE may be effective at accelerating sludge volume reduction, and sludge sanitization.

ANY QUESTIONS?